These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35419991)
1. Confinement-Enhanced Selective Oxidation of Lignin Derivatives to Formic Acid Over Fe-Cu/ZSM-5 Catalysts Under Mild Conditions. Zhang Z; Han P; Li L; Zhang X; Cheng X; Lin J; Wan S; Xiong H; Wang Y; Wang S ChemSusChem; 2022 Jun; 15(12):e202200218. PubMed ID: 35419991 [TBL] [Abstract][Full Text] [Related]
2. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1,4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species. Tian K; Pan J; Liu Y; Wang P; Zhong M; Dong Y; Wang M Environ Sci Pollut Res Int; 2024 Mar; 31(13):19738-19752. PubMed ID: 38363503 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst. Ahmad M; Asghar A; Abdul Raman AA; Wan Daud WM PLoS One; 2015; 10(10):e0141348. PubMed ID: 26517827 [TBL] [Abstract][Full Text] [Related]
4. Transition-metal ions in zeolites: coordination and activation of oxygen. Smeets PJ; Woertink JS; Sels BF; Solomon EI; Schoonheydt RA Inorg Chem; 2010 Apr; 49(8):3573-83. PubMed ID: 20380459 [TBL] [Abstract][Full Text] [Related]
5. Selective conversion of organic pollutant p-chlorophenol to formic acid using zeolite Fenton catalyst. Shen C; Ma J; Liu W; Wen Y; Rashid S Chemosphere; 2016 Oct; 161():446-453. PubMed ID: 27459155 [TBL] [Abstract][Full Text] [Related]
6. Catalytic effect of transition metals on microwave-induced degradation of atrazine in mineral micropores. Hu E; Cheng H Water Res; 2014 Jun; 57():8-19. PubMed ID: 24698722 [TBL] [Abstract][Full Text] [Related]
7. Lignin-Derived Syringol and Acetosyringone from Palm Bunch Using Heterogeneous Oxidative Depolymerization over Mixed Metal Oxide Catalysts under Microwave Heating. Panyadee R; Saengsrichan A; Posoknistakul P; Laosiripojana N; Ratchahat S; Matsagar BM; Wu KC; Sakdaronnarong C Molecules; 2021 Dec; 26(24):. PubMed ID: 34946525 [TBL] [Abstract][Full Text] [Related]
8. Production of vanillin via oxidation depolymerization of lignin over Fe- and Mn-modified TS-1 zeolites. Wan Z; Zhang H; Niu M; Guo Y; Li H Int J Biol Macromol; 2024 Jun; 272(Pt 1):132922. PubMed ID: 38844292 [TBL] [Abstract][Full Text] [Related]
9. NO oxidation over Fe-based catalysts supported on montmorillonite K10, γ-alumina and ZSM-5 with gas-phase H Cui R; Ma S; Wang J; Sun S Chemosphere; 2019 Nov; 234():302-309. PubMed ID: 31228832 [TBL] [Abstract][Full Text] [Related]
10. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst. Kong L; Liu C; Gao J; Wang Y; Dai L Bioresour Technol; 2019 Mar; 276():310-317. PubMed ID: 30641329 [TBL] [Abstract][Full Text] [Related]
11. Developing Fe/zeolite catalysts for efficient catalytic wet peroxidation of three isomeric cresols. Chen L; Sun W; Wei H; Yang X; Sun C; Yu L Environ Sci Pollut Res Int; 2021 Aug; 28(31):42622-42636. PubMed ID: 33818723 [TBL] [Abstract][Full Text] [Related]
12. Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique. Zhang Y; Shang J; Song Y; Rong C; Wang Y; Huang W; Yu K Water Sci Technol; 2017 Feb; 75(3-4):659-669. PubMed ID: 28192360 [TBL] [Abstract][Full Text] [Related]
13. The catalytic and photocatalytic oxidation of organic substances using heterogeneous Fenton-type catalysts. Kuznetsova EV; Savinov EN; Vostrikova LA; Echevskii GV Water Sci Technol; 2004; 49(4):109-15. PubMed ID: 15077957 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst. Li Z; Shen LT; Huang W; Xie KC J Environ Sci (China); 2007; 19(12):1516-9. PubMed ID: 18277659 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst. Valkaj KM; Katovic A; Zrncević S J Hazard Mater; 2007 Jun; 144(3):663-7. PubMed ID: 17416460 [TBL] [Abstract][Full Text] [Related]
16. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
17. [Activating Efficiency of Iron-copper Bimetallic Organic Framework MIL-101(Fe,Cu) Toward H Liang H; Liu RP; An XQ; Liu HJ Huan Jing Ke Xue; 2020 Oct; 41(10):4607-4614. PubMed ID: 33124393 [TBL] [Abstract][Full Text] [Related]
18. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y. Wang H; Ruan H; Feng M; Qin Y; Job H; Luo L; Wang C; Engelhard MH; Kuhn E; Chen X; Tucker MP; Yang B ChemSusChem; 2017 Apr; 10(8):1846-1856. PubMed ID: 28225212 [TBL] [Abstract][Full Text] [Related]
19. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Snyder BER; Bols ML; Schoonheydt RA; Sels BF; Solomon EI Chem Rev; 2018 Mar; 118(5):2718-2768. PubMed ID: 29256242 [TBL] [Abstract][Full Text] [Related]
20. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. Narsimhan K; Michaelis VK; Mathies G; Gunther WR; Griffin RG; Román-Leshkov Y J Am Chem Soc; 2015 Feb; 137(5):1825-32. PubMed ID: 25562431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]