BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35420020)

  • 21. Peptide Cyclization Catalyzed by Cyanobactin Macrocyclases.
    Houssen WE
    Methods Mol Biol; 2019; 2012():193-210. PubMed ID: 31161510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Derivatisable Cyanobactin Analogues: A Semisynthetic Approach.
    Oueis E; Adamson C; Mann G; Ludewig H; Redpath P; Migaud M; Westwood NJ; Naismith JH
    Chembiochem; 2015 Dec; 16(18):2646-50. PubMed ID: 26507241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis.
    Zheng Y; Nair SK
    Nat Chem Biol; 2023 Jan; 19(1):111-119. PubMed ID: 36280794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function.
    Burkhart BJ; Schwalen CJ; Mann G; Naismith JH; Mitchell DA
    Chem Rev; 2017 Apr; 117(8):5389-5456. PubMed ID: 28256131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of cyanobactin biosynthesis.
    Czekster CM; Ge Y; Naismith JH
    Curr Opin Chem Biol; 2016 Dec; 35():80-88. PubMed ID: 27639115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements.
    McIntosh JA; Lin Z; Tianero MD; Schmidt EW
    ACS Chem Biol; 2013 May; 8(5):877-83. PubMed ID: 23411099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation of the Cyanobactin Precursor Peptide Is Independent of the Leader Peptide and Operates in a Defined Order.
    Gao S; Ge Y; Bent AF; Schwarz-Linek U; Naismith JH
    Biochemistry; 2018 Oct; 57(41):5996-6002. PubMed ID: 30208270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides.
    Sardar D; Lin Z; Schmidt EW
    Chem Biol; 2015 Jul; 22(7):907-16. PubMed ID: 26165156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sphaerocyclamide, a prenylated cyanobactin from the cyanobacterium Sphaerospermopsis sp. LEGE 00249.
    Martins J; Leikoski N; Wahlsten M; Azevedo J; Antunes J; Jokela J; Sivonen K; Vasconcelos V; Fewer DP; Leão PN
    Sci Rep; 2018 Sep; 8(1):14537. PubMed ID: 30266955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-pot synthesis of azoline-containing peptides in a cell-free translation system integrated with a posttranslational cyclodehydratase.
    Goto Y; Ito Y; Kato Y; Tsunoda S; Suga H
    Chem Biol; 2014 Jun; 21(6):766-74. PubMed ID: 24856821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.
    Leikoski N; Liu L; Jokela J; Wahlsten M; Gugger M; Calteau A; Permi P; Kerfeld CA; Sivonen K; Fewer DP
    Chem Biol; 2013 Aug; 20(8):1033-43. PubMed ID: 23911585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanding the Structural Space of Ribosomal Peptides: Autocatalytic N-Methylation in Omphalotin Biosynthesis.
    Aldemir H; Gulder TAM
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13570-13572. PubMed ID: 28949431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expanding the chemical space of synthetic cyclic peptides using a promiscuous macrocyclase from prenylagaramide biosynthesis.
    Sarkar S; Gu W; Schmidt EW
    ACS Catal; 2020 Jul; 10(13):7146-7153. PubMed ID: 33457065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool.
    Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW
    Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A global assembly line for cyanobactins.
    Donia MS; Ravel J; Schmidt EW
    Nat Chem Biol; 2008 Jun; 4(6):341-3. PubMed ID: 18425112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations.
    Dunbar KL; Melby JO; Mitchell DA
    Nat Chem Biol; 2012 Apr; 8(6):569-75. PubMed ID: 22522320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual substrate-controlled kinase activity leads to polyphosphorylated lasso peptides.
    Zhu S; Fage CD; Hegemann JD; Yan D; Marahiel MA
    FEBS Lett; 2016 Oct; 590(19):3323-3334. PubMed ID: 27585551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the Limits of Cyanobactin Macrocyclase PatGmac: Cyclization of PawS-Derived Peptide Sunflower Trypsin Inhibitor-1 and Cyclotide Kalata B1.
    Muhammad T; Houssen WE; Thomas L; Alexandru-Crivac CN; Gunasekera S; Jaspars M; Göransson U
    J Nat Prod; 2023 Mar; 86(3):566-573. PubMed ID: 36917740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.