BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35420129)

  • 1. LOMETS3: integrating deep learning and profile alignment for advanced protein template recognition and function annotation.
    Zheng W; Wuyun Q; Zhou X; Li Y; Freddolino PL; Zhang Y
    Nucleic Acids Res; 2022 Jul; 50(W1):W454-W464. PubMed ID: 35420129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins.
    Zheng W; Zhang C; Wuyun Q; Pearce R; Li Y; Zhang Y
    Nucleic Acids Res; 2019 Jul; 47(W1):W429-W436. PubMed ID: 31081035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEMO2: Assemble multi-domain protein structures by coupling analogous template alignments with deep-learning inter-domain restraint prediction.
    Zhou X; Peng C; Zheng W; Li Y; Zhang G; Zhang Y
    Nucleic Acids Res; 2022 Jul; 50(W1):W235-W245. PubMed ID: 35536281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14.
    Liu J; Wu T; Guo Z; Hou J; Cheng J
    Proteins; 2022 Jan; 90(1):58-72. PubMed ID: 34291486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14.
    Zheng W; Li Y; Zhang C; Zhou X; Pearce R; Bell EW; Huang X; Zhang Y
    Proteins; 2021 Dec; 89(12):1734-1751. PubMed ID: 34331351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction.
    Wu S; Zhang Y
    Bioinformatics; 2008 Apr; 24(7):924-31. PubMed ID: 18296462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. I-TASSER server: new development for protein structure and function predictions.
    Yang J; Zhang Y
    Nucleic Acids Res; 2015 Jul; 43(W1):W174-81. PubMed ID: 25883148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information.
    Zhang C; Freddolino PL; Zhang Y
    Nucleic Acids Res; 2017 Jul; 45(W1):W291-W299. PubMed ID: 28472402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MULTICOM2 open-source protein structure prediction system powered by deep learning and distance prediction.
    Wu T; Liu J; Guo Z; Hou J; Cheng J
    Sci Rep; 2021 Jun; 11(1):13155. PubMed ID: 34162922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade.
    Yang J; Zhang W; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):233-46. PubMed ID: 26343917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-based prediction of protein structure with deep learning.
    Zhang H; Shen Y
    BMC Genomics; 2020 Dec; 21(Suppl 11):878. PubMed ID: 33372607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins.
    Zhang C; Zheng W; Mortuza SM; Li Y; Zhang Y
    Bioinformatics; 2020 Apr; 36(7):2105-2112. PubMed ID: 31738385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProALIGN: Directly Learning Alignments for Protein Structure Prediction via Exploiting Context-Specific Alignment Motifs.
    Kong L; Ju F; Zheng WM; Zhu J; Sun S; Xu J; Bu D
    J Comput Biol; 2022 Feb; 29(2):92-105. PubMed ID: 35073170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ThreaDom: extracting protein domain boundary information from multiple threading alignments.
    Xue Z; Xu D; Wang Y; Zhang Y
    Bioinformatics; 2013 Jul; 29(13):i247-56. PubMed ID: 23812990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LOMETS: a local meta-threading-server for protein structure prediction.
    Wu S; Zhang Y
    Nucleic Acids Res; 2007; 35(10):3375-82. PubMed ID: 17478507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein threading using residue co-variation and deep learning.
    Zhu J; Wang S; Bu D; Xu J
    Bioinformatics; 2018 Jul; 34(13):i263-i273. PubMed ID: 29949980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15.
    Zheng W; Wuyun Q; Freddolino PL; Zhang Y
    Proteins; 2023 Dec; 91(12):1684-1703. PubMed ID: 37650367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ThreaDomEx: a unified platform for predicting continuous and discontinuous protein domains by multiple-threading and segment assembly.
    Wang Y; Wang J; Li R; Shi Q; Xue Z; Zhang Y
    Nucleic Acids Res; 2017 Jul; 45(W1):W400-W407. PubMed ID: 28498994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning contact-map guided protein structure prediction in CASP13.
    Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y
    Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.