These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3542027)

  • 1. Incorporation of a synthetic mitochondrial signal peptide into charged and uncharged phospholipid monolayers.
    Tamm LK
    Biochemistry; 1986 Nov; 25(23):7470-6. PubMed ID: 3542027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformations and orientations of a signal peptide interacting with phospholipid monolayers.
    Cornell DG; Dluhy RA; Briggs MS; McKnight CJ; Gierasch LM
    Biochemistry; 1989 Apr; 28(7):2789-97. PubMed ID: 2525918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers.
    Frey S; Tamm LK
    Biochem J; 1990 Dec; 272(3):713-9. PubMed ID: 2176475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers.
    Roise D; Horvath SJ; Tomich JM; Richards JH; Schatz G
    EMBO J; 1986 Jun; 5(6):1327-34. PubMed ID: 3015598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of electrostatic and hydrophobic effects on the interaction of mitochondrial signal sequences with phospholipid bilayers.
    Wang Y; Weiner H
    Biochemistry; 1994 Nov; 33(43):12860-7. PubMed ID: 7947692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane incorporation and induction of secondary structure of synthetic peptides corresponding to the N-terminal signal sequences of the glucitol and mannitol permeases of Escherichia coli.
    Tamm LK; Tomich JM; Saier MH
    J Biol Chem; 1989 Feb; 264(5):2587-92. PubMed ID: 2644265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy.
    Subirade M; Salesse C; Marion D; Pézolet M
    Biophys J; 1995 Sep; 69(3):974-88. PubMed ID: 8519997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of mutant alkaline phosphatase precursors with membrane phospholipids in vivo and in vitro.
    Kalinin AE; Mikhaleva NI; Karamyshev AL; Karamysheva ZN; Nesmeyanova MA
    Biochemistry (Mosc); 1999 Sep; 64(9):1021-9. PubMed ID: 10521719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of bombolitin III with phospholipid monolayers and liposomes and effect on the activity of phospholipase A2.
    Signor G; Mammi S; Peggion E; Ringsdorf H; Wagenknecht A
    Biochemistry; 1994 May; 33(21):6659-70. PubMed ID: 8204603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of a neuropeptide, substance P, to neutral and negatively charged lipids.
    Seelig A; Macdonald PM
    Biochemistry; 1989 Mar; 28(6):2490-6. PubMed ID: 2471549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of ovalbumin and of its putative signal sequence with phospholipid monolayers. Possible importance of differing lateral stabilities in protein translocation.
    Fidelio GD; Austen BM; Chapman D; Lucy JA
    Biochem J; 1987 Jun; 244(2):295-301. PubMed ID: 3663123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of amyloid beta (1-40) peptide at phospholipid monolayers.
    Maltseva E; Kerth A; Blume A; Möhwald H; Brezesinski G
    Chembiochem; 2005 Oct; 6(10):1817-24. PubMed ID: 16175542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of plasma apolipoproteins with lipid monolayers.
    Jackson RL; Pattus F; Demel RA
    Biochim Biophys Acta; 1979 Oct; 556(3):369-87. PubMed ID: 226140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrin-phospholipid interaction. A monolayer study.
    Mombers C; de Gier J; Demel RA; van Deenen LL
    Biochim Biophys Acta; 1980 Dec; 603(1):52-62. PubMed ID: 7448187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local anesthetics and pressure: a comparison of dibucaine binding to lipid monolayers and bilayers.
    Seelig A
    Biochim Biophys Acta; 1987 May; 899(2):196-204. PubMed ID: 3580365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of mitochondrial creatine kinase with model membranes. A monolayer study.
    Rojo M; Hovius R; Demel R; Wallimann T; Eppenberger HM; Nicolay K
    FEBS Lett; 1991 Apr; 281(1-2):123-9. PubMed ID: 2015883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The insertion of D-beta-hydroxybutyrate apodehydrogenase into phospholipid monolayers and phospholipid vesicles.
    Berrez JM; Pattus F; Latruffe N
    Arch Biochem Biophys; 1985 Nov; 243(1):62-9. PubMed ID: 4062308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of cytochrome c and [14C].
    Quinn PJ; Dawson RM
    Biochem J; 1969 Oct; 115(1):65-75. PubMed ID: 5388143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface.
    Maloney KM; Grandbois M; Grainger DW; Salesse C; Lewis KA; Roberts MF
    Biochim Biophys Acta; 1995 May; 1235(2):395-405. PubMed ID: 7756350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.