These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35420413)

  • 41. Peptide Assembled in a Nano-confined Space as a Molecular Rectifier for the Availability of Ionic Current Modulation.
    Shi L; Kuang D; Ma X; Jalalah M; Alsareii SA; Gao T; Harraz FA; Yang J; Li G
    Nano Lett; 2022 Feb; 22(3):1083-1090. PubMed ID: 35049303
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ion diffusion coefficient measurements in nanochannels at various concentrations.
    Wang J; Zhang L; Xue J; Hu G
    Biomicrofluidics; 2014 Mar; 8(2):024118. PubMed ID: 24803967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores.
    Ali M; Ahmed I; Nasir S; Ramirez P; Niemeyer CM; Mafe S; Ensinger W
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19541-5. PubMed ID: 26310320
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques.
    Ding D; Gao P; Ma Q; Wang D; Xia F
    Small; 2019 Aug; 15(32):e1804878. PubMed ID: 30756522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetic Gated Biomimetic Artificial Nanochannels for Controllable Ion Transportation Inspired by Homing Pigeon.
    Hou G; Wang D; Xiao K; Zhang H; Zheng S; Li P; Tian Y; Jiang L
    Small; 2018 May; 14(18):e1703369. PubMed ID: 29399965
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering artificial switchable nanochannels for selective monitoring of nitric oxide release from living cells.
    Ge L; Wu J; Wang C; Zhang F; Liu Z
    Biosens Bioelectron; 2020 Dec; 169():112606. PubMed ID: 32947083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels.
    Liu Q; Xiao K; Wen L; Lu H; Liu Y; Kong XY; Xie G; Zhang Z; Bo Z; Jiang L
    J Am Chem Soc; 2015 Sep; 137(37):11976-83. PubMed ID: 26340444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulating Ion Transport in a Nanochannel with Tandem and Parallel Structures via Concentration Polarization.
    Wu ZQ; Li ZQ; Wang Y; Xia XH
    J Phys Chem Lett; 2020 Jan; 11(2):524-529. PubMed ID: 31825632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of Redox-Controllable Bioinspired Nanochannels for Precisely Regulating Protein Transport.
    Tu L; Qiu S; Li Y; Chen X; Han Y; Li J; Xiong X; Sun Y; Li H
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35657807
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An H
    Qin H; Ding X; Cheng SQ; Qin SY; Han X; Sun Y; Liu Y
    J Phys Chem Lett; 2022 Oct; 13(39):9232-9237. PubMed ID: 36173107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enantioselective Antiport in Asymmetric Nanochannels.
    Zhang S; Cheng M; Dhinakaran MK; Sun Y; Li H
    ACS Nano; 2021 Aug; 15(8):13148-13154. PubMed ID: 34319088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learning from nature: building bio-inspired smart nanochannels.
    Hou X; Jiang L
    ACS Nano; 2009 Nov; 3(11):3339-42. PubMed ID: 19928930
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative detection of potassium ions and adenosine triphosphate via a nanochannel-based electrochemical platform coupled with G-quadruplex aptamers.
    Yu J; Zhang L; Xu X; Liu S
    Anal Chem; 2014 Nov; 86(21):10741-8. PubMed ID: 25333881
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineered Nanochannel Membranes with Diode-like Behavior for Energy Conversion over a Wide pH Range.
    Sui X; Zhang Z; Li C; Gao L; Zhao Y; Yang L; Wen L; Jiang L
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23815-23821. PubMed ID: 30035526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of temperature gradients on charge transport in asymmetric nanochannels.
    Benneker AM; Wendt HD; Lammertink RGH; Wood JA
    Phys Chem Chem Phys; 2017 Oct; 19(41):28232-28238. PubMed ID: 29027561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.
    Li D; Jing W; Li S; Shen H; Xing W
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11294-300. PubMed ID: 25961963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthetic azobenzene-containing metal-organic framework ion channels toward efficient light-gated ion transport at the subnanoscale.
    Qian T; Zhao C; Wang R; Chen X; Hou J; Wang H; Zhang H
    Nanoscale; 2021 Oct; 13(41):17396-17403. PubMed ID: 34642709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels.
    Gao P; Ma Q; Ding D; Wang D; Lou X; Zhai T; Xia F
    Nat Commun; 2018 Nov; 9(1):4557. PubMed ID: 30385758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solid-State Nanochannel-Based Sensing Systems: Development, Challenges, and Opportunities.
    Huang Y; Zhang W; Xia F; Jiang L
    Langmuir; 2022 Mar; 38(8):2415-2422. PubMed ID: 35170974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aptamer Self-Assembly-Functionalized Nanochannels for Sensitive and Precise Detection of Chloramphenicol.
    Ran XQ; Qian HL; Yan XP
    Anal Chem; 2021 Oct; 93(42):14287-14292. PubMed ID: 34637621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.