These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 35420476)

  • 21. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.
    Vediyappan G; Dumontet V; Pelissier F; d'Enfert C
    PLoS One; 2013; 8(9):e74189. PubMed ID: 24040201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zap1 control of cell-cell signaling in Candida albicans biofilms.
    Ganguly S; Bishop AC; Xu W; Ghosh S; Nickerson KW; Lanni F; Patton-Vogt J; Mitchell AP
    Eukaryot Cell; 2011 Nov; 10(11):1448-54. PubMed ID: 21890817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity of coumarin against Candida albicans biofilms.
    Xu K; Wang JL; Chu MP; Jia C
    J Mycol Med; 2019 Apr; 29(1):28-34. PubMed ID: 30606640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transdermal administration of farnesol-ethosomes enhances the treatment of cutaneous candidiasis induced by
    Shen T; Tian B; Liu W; Yang X; Sheng Q; Li M; Wang H; Wang X; Zhou H; Han Y; Ding C; Sai S
    Microbiol Spectr; 2024 Apr; 12(4):e0424723. PubMed ID: 38415658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alizarin and Chrysazin Inhibit Biofilm and Hyphal Formation by
    Manoharan RK; Lee JH; Kim YG; Lee J
    Front Cell Infect Microbiol; 2017; 7():447. PubMed ID: 29085811
    [No Abstract]   [Full Text] [Related]  

  • 26. Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation.
    Romo JA; Zhang H; Cai H; Kadosh D; Koehler JR; Saville SP; Wang Y; Lopez-Ribot JL
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31511371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escherichia coli enhances the virulence factors of Candida albicans, the cause of vulvovaginal candidiasis, in a dual bacterial/fungal biofilm.
    Farrokhi Y; Al-Shibli B; Al-Hameedawi DF; Neshati Z; Makhdoumi A
    Res Microbiol; 2021; 172(4-5):103849. PubMed ID: 34089837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hgc1 Independence of Biofilm Hyphae in Candida albicans.
    Sharma A; Solis NV; Huang MY; Lanni F; Filler SG; Mitchell AP
    mBio; 2023 Apr; 14(2):e0349822. PubMed ID: 36779720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimicrobial Effect of Extracellular Vesicles Derived From Human Oral Mucosal Epithelial Cells on
    Zhao M; Zhang M; Xu K; Wu K; Xie R; Li R; Wang Q; Liu W; Wang W; Wang X
    Front Immunol; 2022; 13():777613. PubMed ID: 35844569
    [No Abstract]   [Full Text] [Related]  

  • 30. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.
    Sun L; Liao K; Wang D
    PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol.
    Lee JH; Kim YG; Khadke SK; Lee J
    Microb Biotechnol; 2021 Jul; 14(4):1353-1366. PubMed ID: 33252828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans.
    Zhang L; Chang W; Sun B; Groh M; Speicher A; Lou H
    PLoS One; 2011; 6(12):e28953. PubMed ID: 22174935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppression of hyphal formation and virulence of
    Khan F; Bamunuarachchi NI; Tabassum N; Jo DM; Khan MM; Kim YM
    Biofouling; 2021 Jul; 37(6):626-655. PubMed ID: 34284656
    [No Abstract]   [Full Text] [Related]  

  • 34. Modulation of morphogenesis in Candida albicans by various small molecules.
    Shareck J; Belhumeur P
    Eukaryot Cell; 2011 Aug; 10(8):1004-12. PubMed ID: 21642508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans.
    Wakade RS; Ristow LC; Stamnes MA; Kumar A; Krysan DJ
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of extracellular DNA from Candida albicans and pneumonia-related pathogens on Candida biofilm formation and hyphal transformation.
    Sapaar B; Nur A; Hirota K; Yumoto H; Murakami K; Amoh T; Matsuo T; Ichikawa T; Miyake Y
    J Appl Microbiol; 2014 Jun; 116(6):1531-42. PubMed ID: 24661775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of
    Lee HS; Kim Y
    J Microbiol Biotechnol; 2018 Mar; 28(3):482-490. PubMed ID: 29316739
    [No Abstract]   [Full Text] [Related]  

  • 38. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.
    James KM; MacDonald KW; Chanyi RM; Cadieux PA; Burton JP
    J Med Microbiol; 2016 Apr; 65(4):328-336. PubMed ID: 26847045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from Candida albicans and Candida auris.
    Zamith-Miranda D; Heyman HM; Couvillion SP; Cordero RJB; Rodrigues ML; Nimrichter L; Casadevall A; Amatuzzi RF; Alves LR; Nakayasu ES; Nosanchuk JD
    mSystems; 2021 Aug; 6(4):e0082221. PubMed ID: 34427507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development.
    Rajasekar V; Darne P; Prabhune A; Kao RYT; Solomon AP; Ramage G; Samaranayake L; Neelakantan P
    Colloids Surf B Biointerfaces; 2021 Apr; 200():111617. PubMed ID: 33592455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.