These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35420787)

  • 1. Rapid Assessment of Meat Freshness by the Differential Sensing of Organic Sulfides Emitted during Spoilage.
    Yu X; Gong Y; Ji H; Cheng C; Lv C; Zhang Y; Zang L; Zhao J; Che Y
    ACS Sens; 2022 May; 7(5):1395-1402. PubMed ID: 35420787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness.
    Nie W; Chen Y; Zhang H; Liu J; Peng Z; Li Y
    Anal Bioanal Chem; 2022 Aug; 414(20):6017-6027. PubMed ID: 35788870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanostilbene-based fluorescent paper array for monitoring fish and meat freshness via amino content detection.
    Dhinakaran MK; Smith BL; Vilaivan T; Maher S; Praneenararat T
    Mikrochim Acta; 2023 May; 190(6):215. PubMed ID: 37171648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Application of Dual-Sensors Label in Combination with Active Chitosan-Based Coating Incorporating Yarrow Essential Oil for Freshness Monitoring and Shelf-Life Extension of Chicken Fillet.
    Peighambardoust SH; Yaghoubi M; Hosseinpour A; Alirezalu K; Soltanzadeh M; Dadpour M
    Foods; 2022 Nov; 11(21):. PubMed ID: 36360146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Potential Peptide Marker(s) for Evaluating Pork Meat Freshness via Mass Spectrometry-Based Peptidomics during Storage under Different Temperatures.
    Wei Z; Dai C; Bassey AP; Tang C; Han Y; Wang C; Zhou G
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Intelligent Detector for Sensing Pork Freshness In Situ Based on a Multispectral Technique.
    Zou W; Peng Y; Yang D; Zuo J; Li Y; Guo Q
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method.
    Tian XY; Cai Q; Zhang YM
    Sensors (Basel); 2012; 12(1):260-77. PubMed ID: 22368468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered nanomaterials-based sensing systems for assessing the freshness of meat and aquatic products: A state-of-the-art review.
    Duan X; Li Z; Wang L; Lin H; Wang K
    Compr Rev Food Sci Food Saf; 2023 Jan; 22(1):430-450. PubMed ID: 36451298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in meat freshness "magnifier": fluorescence sensing.
    Zhao J; Ni Y; Tan L; Zhang W; Zhou H; Xu B
    Crit Rev Food Sci Nutr; 2024 Nov; 64(31):11626-11642. PubMed ID: 37555377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenic amines- and sulfides-responsive gold nanoparticles for real-time visual detection of raw meat, fish, crustaceans, and preserved meat.
    Chow CF
    Food Chem; 2020 May; 311():125908. PubMed ID: 31753679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone based meat freshness detection.
    Perez de Vargas-Sansalvador IM; Erenas MM; Martínez-Olmos A; Mirza-Montoro F; Diamond D; Capitan-Vallvey LF
    Talanta; 2020 Aug; 216():120985. PubMed ID: 32456894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of lanthanide MOFs/methylcellulose-based fluorescent sensor arrays and deep learning for fish freshness monitoring.
    Xu X; Wang X; Ding Y; Zhou X; Ding Y
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):131011. PubMed ID: 38518947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast visual monitoring of the freshness of beef using a smart fluorescent sensor.
    Zeng L; Xiao X; Ye H; Ma D; Zhou J
    Food Chem; 2022 Nov; 394():133489. PubMed ID: 35717912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast real-time monitoring of meat freshness based on fluorescent sensing array and deep learning: From development to deployment.
    Lin Y; Ma J; Sun DW; Cheng JH; Zhou C
    Food Chem; 2024 Aug; 448():139078. PubMed ID: 38527403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irreversible Spoilage Sensors for Protein-Based Food.
    Liu B; Gurr PA; Qiao GG
    ACS Sens; 2020 Sep; 5(9):2903-2908. PubMed ID: 32869625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RhB@MOF-5 Composite Film as a Fluorescence Sensor for Detection of Chilled Pork Freshness.
    Li J; Zhang N; Yang X; Yang X; Wang Z; Liu H
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimetallic-based food sensors for meat spoilage: Effects of the accepting metallic unit in Fe(II)CNM
    Chow CF
    Food Chem; 2019 Dec; 300():125190. PubMed ID: 31330375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualized test of environmental water pollution and meat freshness: Design of Au NCs-CDs-test paper/PVA film for ratiometric fluorescent sensing of sulfide.
    Huang Y; Chen S; Huang W; Zhuang X; Zeng J; Rong M; Niu L
    Food Chem; 2024 Jan; 432():137292. PubMed ID: 37657332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time and rapid prediction of TVB-N of livestock and poultry meat at three depths for freshness evaluation using a portable fluorescent film sensor.
    Zhang D; Zhu L; Jiang Q; Ge X; Fang Y; Peng J; Liu Y
    Food Chem; 2023 Jan; 400():134041. PubMed ID: 36087480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. User-friendly lab-on-paper optical sensor for the rapid detection of bacterial spoilage in packaged meat products.
    Abo Dena AS; Khalid SA; Ghanem AF; Shehata AI; El-Sherbiny IM
    RSC Adv; 2021 Oct; 11(56):35165-35173. PubMed ID: 35493139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.