These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35420932)

  • 1. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets.
    Avrahami EM; Houben L; Aram L; Gal A
    Science; 2022 Apr; 376(6590):312-316. PubMed ID: 35420932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice distortions in coccolith calcite crystals originate from occlusion of biomacromolecules.
    Hood MA; Leemreize H; Scheffel A; Faivre D
    J Struct Biol; 2016 Nov; 196(2):147-154. PubMed ID: 27645701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological development of Pleurochrysis carterae coccoliths examined by cryo-electron tomography.
    Walker JM; Marzec B; Ozaki N; Clare D; Nudelman F
    J Struct Biol; 2020 Apr; 210(1):107476. PubMed ID: 32018012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coccolith crystals: Pure calcite or organic-mineral composite structures?
    Walker JM; Langer G
    Acta Biomater; 2021 Apr; 125():83-89. PubMed ID: 33631395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular recognition directs calcium ions to coccolith mineralization sites.
    Gal A; Wirth R; Kopka J; Fratzl P; Faivre D; Scheffel A
    Science; 2016 Aug; 353(6299):590-3. PubMed ID: 27493186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization.
    Kayano K; Saruwatari K; Kogure T; Shiraiwa Y
    Mar Biotechnol (NY); 2011 Feb; 13(1):83-92. PubMed ID: 20336339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The variability in the structural and functional properties of coccolith base plates.
    Eyal Z; Krounbi L; Ben Joseph O; Avrahami EM; Pinkas I; Peled-Zehavi H; Gal A
    Acta Biomater; 2022 Aug; 148():336-344. PubMed ID: 35738389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.
    Yin X; Ziegler A; Kelm K; Hoffmann R; Watermeyer P; Alexa P; Villinger C; Rupp U; Schlüter L; Reusch TBH; Griesshaber E; Walther P; Schmahl WW
    J Phycol; 2018 Feb; 54(1):85-104. PubMed ID: 29092105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification.
    Hassenkam T; Johnsson A; Bechgaard K; Stipp SL
    Proc Natl Acad Sci U S A; 2011 May; 108(21):8571-6. PubMed ID: 21551094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and crystallographic transformation from immature to mature coccoliths, Pleurochrysis carterae.
    Saruwatari K; Nagasaka S; Ozaki N; Nagasawa H
    Mar Biotechnol (NY); 2011 Aug; 13(4):801-9. PubMed ID: 21258835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional architecture and surface functionality of coccolith base plates.
    Marzec B; Walker JM; Panagopoulou M; Jhons Y; Clare D; Wheeler A; Shaver MP; Nudelman F
    J Struct Biol; 2019 Nov; 208(2):127-136. PubMed ID: 31437582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphogenesis of calcitic sponge spicules: a role for specialized proteins interacting with growing crystals.
    Aizenberg J; Hanson J; Ilan M; Leiserowitz L; Koetzle TF; Addadi L; Weiner S
    FASEB J; 1995 Feb; 9(2):262-8. PubMed ID: 7781928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules.
    Pokroy B; Fitch AN; Marin F; Kapon M; Adir N; Zolotoyabko E
    J Struct Biol; 2006 Jul; 155(1):96-103. PubMed ID: 16682231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forming Anisotropic Crystal Composites: Assessing the Mechanical Translation of Gel Network Anisotropy to Calcite Crystal Form.
    Palin D; Style RW; Zlopaša J; Petrozzini JJ; Pfeifer MA; Jonkers HM; Dufresne ER; Estroff LA
    J Am Chem Soc; 2021 Mar; 143(9):3439-3447. PubMed ID: 33647198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals.
    Kim YY; Ganesan K; Yang P; Kulak AN; Borukhin S; Pechook S; Ribeiro L; Kröger R; Eichhorn SJ; Armes SP; Pokroy B; Meldrum FC
    Nat Mater; 2011 Sep; 10(11):890-6. PubMed ID: 21892179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgae.
    Kadan Y; Tollervey F; Varsano N; Mahamid J; Gal A
    Proc Natl Acad Sci U S A; 2021 Nov; 118(46):. PubMed ID: 34772804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels.
    Li H; Xin HL; Muller DA; Estroff LA
    Science; 2009 Nov; 326(5957):1244-7. PubMed ID: 19965470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-equilibrium anisotropic colloidal single crystal growth with DNA.
    Seo SE; Girard M; Olvera de la Cruz M; Mirkin CA
    Nat Commun; 2018 Nov; 9(1):4558. PubMed ID: 30385762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct fabrication of large micropatterned single crystals.
    Aizenberg J; Muller DA; Grazul JL; Hamann DR
    Science; 2003 Feb; 299(5610):1205-8. PubMed ID: 12595685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization-induced properties from morphology-controlled organic crystals.
    Park C; Park JE; Choi HC
    Acc Chem Res; 2014 Aug; 47(8):2353-64. PubMed ID: 24901373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.