BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35421089)

  • 1. Phylogenetic profiling in eukaryotes: The effect of species, orthologous group, and interactome selection on protein interaction prediction.
    Deutekom ES; van Dam TJP; Snel B
    PLoS One; 2022; 17(4):e0251833. PubMed ID: 35421089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking orthology methods using phylogenetic patterns defined at the base of Eukaryotes.
    Deutekom ES; Snel B; van Dam TJP
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32935832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of reference genome selection on the performance of computational methods for genome-wide protein-protein interaction prediction.
    Muley VY; Ranjan A
    PLoS One; 2012; 7(7):e42057. PubMed ID: 22844541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative assessment of performance and genome dependence among phylogenetic profiling methods.
    Snitkin ES; Gustafson AM; Mellor J; Wu J; DeLisi C
    BMC Bioinformatics; 2006 Sep; 7():420. PubMed ID: 17005048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of eukaryotic phylogenetic profiling approaches using species tree aware methods.
    Ruano-Rubio V; Poch O; Thompson JD
    BMC Bioinformatics; 2009 Nov; 10():383. PubMed ID: 19930674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes.
    Ranea JA; Yeats C; Grant A; Orengo CA
    PLoS Comput Biol; 2007 Nov; 3(11):e237. PubMed ID: 18052542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive analysis of the origin of eukaryotic genomes.
    Saruhashi S; Hamada K; Miyata D; Horiike T; Shinozawa T
    Genes Genet Syst; 2008 Aug; 83(4):285-91. PubMed ID: 18931454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The COG database: an updated version includes eukaryotes.
    Tatusov RL; Fedorova ND; Jackson JD; Jacobs AR; Kiryutin B; Koonin EV; Krylov DM; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Smirnov S; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    BMC Bioinformatics; 2003 Sep; 4():41. PubMed ID: 12969510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment.
    Jothi R; Przytycka TM; Aravind L
    BMC Bioinformatics; 2007 May; 8():173. PubMed ID: 17521444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes.
    Moi D; Kilchoer L; Aguilar PS; Dessimoz C
    PLoS Comput Biol; 2020 Jul; 16(7):e1007553. PubMed ID: 32697802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of phylogenomic and orthology approaches for phylogenetic inference.
    Dutilh BE; van Noort V; van der Heijden RT; Boekhout T; Snel B; Huynen MA
    Bioinformatics; 2007 Apr; 23(7):815-24. PubMed ID: 17237036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes.
    Kannan S; Rogozin IB; Koonin EV
    BMC Evol Biol; 2014 Nov; 14():237. PubMed ID: 25421434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and Early Evolution of the Eukaryotic Cell.
    Gabaldón T
    Annu Rev Microbiol; 2021 Oct; 75():631-647. PubMed ID: 34343017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mode and tempo of genome size evolution in eukaryotes.
    Oliver MJ; Petrov D; Ackerly D; Falkowski P; Schofield OM
    Genome Res; 2007 May; 17(5):594-601. PubMed ID: 17420184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endosymbiotic origin and differential loss of eukaryotic genes.
    Ku C; Nelson-Sathi S; Roettger M; Sousa FL; Lockhart PJ; Bryant D; Hazkani-Covo E; McInerney JO; Landan G; Martin WF
    Nature; 2015 Aug; 524(7566):427-32. PubMed ID: 26287458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of phylogenetic profiles based on the genetic distance of hundreds of genomes.
    Sun J; Zhao Z
    Biochem Biophys Res Commun; 2007 Apr; 355(3):849-53. PubMed ID: 17320815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadly sampled orthologous groups of eukaryotic proteins for the phylogenetic study of plastid-bearing lineages.
    Van Vlierberghe M; Philippe H; Baurain D
    BMC Res Notes; 2021 Apr; 14(1):143. PubMed ID: 33865444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the impact of gene prediction on gene loss estimates in Eukaryotes by quantifying falsely inferred absences.
    Deutekom ES; Vosseberg J; van Dam TJP; Snel B
    PLoS Comput Biol; 2019 Aug; 15(8):e1007301. PubMed ID: 31461468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.