BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35421095)

  • 1. Adapting to altered auditory cues: Generalization from manual reaching to head pointing.
    Valzolgher C; Todeschini M; Verdelet G; Gatel J; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    PLoS One; 2022; 17(4):e0263509. PubMed ID: 35421095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaching to Sounds Improves Spatial Hearing in Bilateral Cochlear Implant Users.
    Valzolgher C; Gatel J; Bouzaid S; Grenouillet S; Todeschini M; Verdelet G; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    Ear Hear; 2023 Jan-Feb 01; 44(1):189-198. PubMed ID: 35982520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Updating spatial hearing abilities through multisensory and motor cues.
    Valzolgher C; Campus C; Rabini G; Gori M; Pavani F
    Cognition; 2020 Nov; 204():104409. PubMed ID: 32717425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Hearing Difficulties in Reaching Space in Bilateral Cochlear Implant Children Improve With Head Movements.
    Coudert A; Gaveau V; Gatel J; Verdelet G; Salemme R; Farne A; Pavani F; Truy E
    Ear Hear; 2022; 43(1):192-205. PubMed ID: 34225320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training spatial hearing in unilateral cochlear implant users through reaching to sounds in virtual reality.
    Valzolgher C; Bouzaid S; Grenouillet S; Gatel J; Ratenet L; Murenu F; Verdelet G; Salemme R; Gaveau V; Coudert A; Hermann R; Truy E; Farnè A; Pavani F
    Eur Arch Otorhinolaryngol; 2023 Aug; 280(8):3661-3672. PubMed ID: 36905419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Adaptation in Azimuth and Elevation to Acute Monaural Spatial Hearing after Training with Visual Feedback.
    Zonooz B; Van Opstal AJ
    eNeuro; 2019; 6(6):. PubMed ID: 31601632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between postural stability and spatial hearing.
    Zhong X; Yost WA
    J Am Acad Audiol; 2013 Oct; 24(9):782-8. PubMed ID: 24224986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and non-spatial multisensory cueing in unilateral cochlear implant users.
    Pavani F; Venturini M; Baruffaldi F; Artesini L; Bonfioli F; Frau GN; van Zoest W
    Hear Res; 2017 Feb; 344():24-37. PubMed ID: 27810286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefits of active listening during 3D sound localization.
    Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F
    Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between egocentric and allocentric spatial coding of sounds revealed by a multisensory learning paradigm.
    Rabini G; Altobelli E; Pavani F
    Sci Rep; 2019 May; 9(1):7892. PubMed ID: 31133688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orienting Auditory Attention through Vision: the Impact of Monaural Listening.
    Turri S; Rizvi M; Rabini G; Melonio A; Gennari R; Pavani F
    Multisens Res; 2021 Aug; 35(1):1-28. PubMed ID: 34384046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence and generalization of adaptive changes in auditory localization behavior following unilateral conductive hearing loss.
    Sanchez Jimenez A; Willard KJ; Bajo VM; King AJ; Nodal FR
    Front Neurosci; 2023; 17():1067937. PubMed ID: 36816127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training-induced plasticity of auditory localization in adult mammals.
    Kacelnik O; Nodal FR; Parsons CH; King AJ
    PLoS Biol; 2006 Apr; 4(4):e71. PubMed ID: 16509769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisensory training improves auditory spatial processing following bilateral cochlear implantation.
    Isaiah A; Vongpaisal T; King AJ; Hartley DE
    J Neurosci; 2014 Aug; 34(33):11119-30. PubMed ID: 25122908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-weighting of Sound Localization Cues by Audiovisual Training.
    Kumpik DP; Campbell C; Schnupp JWH; King AJ
    Front Neurosci; 2019; 13():1164. PubMed ID: 31802997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-specific reweighting of auditory spatial cues following altered experience during development.
    Keating P; Dahmen JC; King AJ
    Curr Biol; 2013 Jul; 23(14):1291-9. PubMed ID: 23810532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of the effects of unilateral hearing loss on spatial hearing.
    Kumpik DP; King AJ
    Hear Res; 2019 Feb; 372():17-28. PubMed ID: 30143248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Generalization of Auditory Accommodation to Altered Spectral Cues.
    Watson CJG; Carlile S; Kelly H; Balachandar K
    Sci Rep; 2017 Sep; 7(1):11588. PubMed ID: 28912440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.