These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35421308)

  • 21. Profiling the 'deamidome' of complex biosamples using mixed-mode chromatography-coupled tandem mass spectrometry.
    Sze SK; JebaMercy G; Ngan SC
    Methods; 2022 Apr; 200():31-41. PubMed ID: 32418626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Asp isomerization in proteins by ¹⁸O labeling and tandem mass spectrometry.
    Zhang J; Katta V
    Methods Mol Biol; 2012; 899():365-77. PubMed ID: 22735965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform.
    Yu X; Warme C; Lee D; Zhang J; Zhong W
    Anal Chem; 2013 Oct; 85(19):8964-7. PubMed ID: 24003984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chip-Based Capillary Zone Electrophoresis Mass Spectrometry for Rapid Resolution and Quantitation of Critical Quality Attributes in Protein Biotherapeutics.
    Dykstra AB; Flick TG; Lee B; Blue LE; Angell N
    J Am Soc Mass Spectrom; 2021 Aug; 32(8):1952-1963. PubMed ID: 33730487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the structural complexity of isomeric bile acids with ion mobility spectrometry.
    Zheng X; Smith FB; Aly NA; Cai J; Smith RD; Patterson AD; Baker ES
    Anal Bioanal Chem; 2019 Jul; 411(19):4673-4682. PubMed ID: 31098744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry.
    Fan RJ; Zhang F; Chen XP; Qi WS; Guan Q; Sun TQ; Guo YL
    Anal Chim Acta; 2017 Apr; 961():82-90. PubMed ID: 28224912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing analytical methods to monitor isoAsp formation in monoclonal antibodies.
    Eakin CM; Miller A; Kerr J; Kung J; Wallace A
    Front Pharmacol; 2014; 5():87. PubMed ID: 24808864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the pathway and kinetics of aspartic acid isomerization in peptide mapping methods for monoclonal antibodies.
    Kuang J; Tao Y; Song Y; Chemmalil L; Mussa N; Ding J; Li ZJ
    Anal Bioanal Chem; 2021 Mar; 413(8):2113-2123. PubMed ID: 33543314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the isomerization products of aspartate residues at two different sites in a monoclonal antibody.
    Sreedhara A; Cordoba A; Zhu Q; Kwong J; Liu J
    Pharm Res; 2012 Jan; 29(1):187-97. PubMed ID: 21809161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Fluorescence-Based High-Throughput Coupled Enzymatic Assay for Quantitation of Isoaspartate in Proteins and Peptides.
    Puri A; Quan Y; Narang AS; Adams M; Gandhi R; Nashine VC
    AAPS PharmSciTech; 2017 Apr; 18(3):803-808. PubMed ID: 27342117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isoaspartic acid is present at specific sites in myelin basic protein from multiple sclerosis patients: could this represent a trigger for disease onset?
    Friedrich MG; Hancock SE; Raftery MJ; Truscott RJ
    Acta Neuropathol Commun; 2016 Aug; 4(1):83. PubMed ID: 27519525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interconversion of the peptide isoforms of aspartate: stability of isoaspartates.
    Hooi MY; Raftery MJ; Truscott RJ
    Mech Ageing Dev; 2013 Mar; 134(3-4):103-9. PubMed ID: 23385093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LC-MS Approach to Decipher a Light Chain Chromatographic Peak Splitting of a Monoclonal Antibody.
    Liu Y; VanAernum Z; Zhang Y; Gao X; Vlad M; Feng B; Cross R; Kilgore B; Newman A; Wang D; Schuessler HA; Richardson DD; Chadwick JS
    Pharm Res; 2023 Dec; 40(12):3087-3098. PubMed ID: 37936013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid HILIC-Z ion mobility mass spectrometry (RHIMMS) method for untargeted metabolomics of complex biological samples.
    Pičmanová M; Moses T; Cortada-Garcia J; Barrett G; Florance H; Pandor S; Burgess K
    Metabolomics; 2022 Feb; 18(3):16. PubMed ID: 35229219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice.
    Dai S; Ni W; Patananan AN; Clarke SG; Karger BL; Zhou ZS
    Anal Chem; 2013 Feb; 85(4):2423-30. PubMed ID: 23327623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-Function Assessment and High-Throughput Quantification of Site-Specific Aspartate Isomerization in Monoclonal Antibody Using a Novel Analytical Tool Kit.
    Zhou K; Cao X; Bautista J; Chen Z; Hershey N; Ludwig R; Tao L; Zeng M; Das TK
    J Pharm Sci; 2020 Jan; 109(1):422-428. PubMed ID: 31469998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry.
    Koomen DC; May JC; McLean JA
    Expert Rev Proteomics; 2022 Jan; 19(1):17-31. PubMed ID: 34986717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of stereoisomers and isoforms of a tryptic heptapeptide fragment of human growth hormone and analysis by reverse-phase HPLC and capillary electrophoresis.
    Vinther A; Holm A; Høeg-Jensen T; Jespersen AM; Klausen NK; Christensen T; Sørensen HH
    Eur J Biochem; 1996 Jan; 235(1-2):304-9. PubMed ID: 8631346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues.
    Güttler BH; Cynis H; Seifert F; Ludwig HH; Porzel A; Schilling S
    Amino Acids; 2013 Apr; 44(4):1205-14. PubMed ID: 23344882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous determination of post-translational racemization and isomerization of N-terminal amyloid-β in Alzheimer's brain tissues by covalent chiral derivatized ultraperformance liquid chromatography tandem mass spectrometry.
    Inoue K; Hosaka D; Mochizuki N; Akatsu H; Tsutsumiuchi K; Hashizume Y; Matsukawa N; Yamamoto T; Toyo'oka T
    Anal Chem; 2014 Jan; 86(1):797-804. PubMed ID: 24283798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.