BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35421352)

  • 1. A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme.
    Bari SMN; Chou-Zheng L; Howell O; Hossain M; Hill CM; Boyle TA; Cater K; Dandu VS; Thomas A; Aslan B; Hatoum-Aslan A
    Cell Host Microbe; 2022 Apr; 30(4):570-582.e7. PubMed ID: 35421352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications.
    Wang S; Sun E; Liu Y; Yin B; Zhang X; Li M; Huang Q; Tan C; Qian P; Rao VB; Tao P
    J Virol; 2023 Jun; 97(6):e0059923. PubMed ID: 37306585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single bacterial enzyme i(NHI)bits phage DNA replication.
    Huiting E; Bondy-Denomy J
    Cell Host Microbe; 2022 Apr; 30(4):417-419. PubMed ID: 35421333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coevolution between bacterial CRISPR-Cas systems and their bacteriophages.
    Watson BNJ; Steens JA; Staals RHJ; Westra ER; van Houte S
    Cell Host Microbe; 2021 May; 29(5):715-725. PubMed ID: 33984274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DNA phosphorothioation-based Dnd defense system provides resistance against various phages and is compatible with the Ssp defense system.
    Jiang S; Chen K; Wang Y; Zhang Y; Tang Y; Huang W; Xiong X; Chen S; Chen C; Wang L
    mBio; 2023 Aug; 14(4):e0093323. PubMed ID: 37260233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
    Bari SMN; Walker FC; Cater K; Aslan B; Hatoum-Aslan A
    ACS Synth Biol; 2017 Dec; 6(12):2316-2325. PubMed ID: 28885820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phage-Encoded Anti-CRISPR Defenses.
    Stanley SY; Maxwell KL
    Annu Rev Genet; 2018 Nov; 52():445-464. PubMed ID: 30208287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas.
    Gurney J; Pleška M; Levin BR
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180096. PubMed ID: 30905282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection.
    Mayo-Muñoz D; Smith LM; Garcia-Doval C; Malone LM; Harding KR; Jackson SA; Hampton HG; Fagerlund RD; Gumy LF; Fineran PC
    Mol Cell; 2022 Dec; 82(23):4471-4486.e9. PubMed ID: 36395770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How bacteria control the CRISPR-Cas arsenal.
    Leon LM; Mendoza SD; Bondy-Denomy J
    Curr Opin Microbiol; 2018 Apr; 42():87-95. PubMed ID: 29169146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveil the Secret of the Bacteria and Phage Arms Race.
    Wang Y; Fan H; Tong Y
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response.
    Maguin P; Varble A; Modell JW; Marraffini LA
    Mol Cell; 2022 Mar; 82(5):907-919.e7. PubMed ID: 35134339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiphage small molecules produced by bacteria - beyond protein-mediated defenses.
    Hardy A; Kever L; Frunzke J
    Trends Microbiol; 2023 Jan; 31(1):92-106. PubMed ID: 36038409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleic Acid Immunity.
    Hartmann G
    Adv Immunol; 2017; 133():121-169. PubMed ID: 28215278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD
    Ka D; Oh H; Park E; Kim JH; Bae E
    Nat Commun; 2020 Jun; 11(1):2816. PubMed ID: 32499527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial alginate regulators and phage homologs repress CRISPR-Cas immunity.
    Borges AL; Castro B; Govindarajan S; Solvik T; Escalante V; Bondy-Denomy J
    Nat Microbiol; 2020 May; 5(5):679-687. PubMed ID: 32203410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.
    Meeske AJ; Nakandakari-Higa S; Marraffini LA
    Nature; 2019 Jun; 570(7760):241-245. PubMed ID: 31142834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.