These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35421823)

  • 41. Uptake and dissipation of neonicotinoid residues in nectar and foliage of systemically treated woody landscape plants.
    Mach BM; Bondarenko S; Potter DA
    Environ Toxicol Chem; 2018 Mar; 37(3):860-870. PubMed ID: 29080359
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling banana uptake of pesticides by incorporating a peel-pulp interaction system into a multicompartment fruit tree model.
    Li Z
    J Hazard Mater; 2023 Feb; 444(Pt A):130411. PubMed ID: 36403454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glyphosate used as desiccant contaminates plant pollen and nectar of non-target plant species.
    Zioga E; White B; Stout JC
    Heliyon; 2022 Dec; 8(12):e12179. PubMed ID: 36531643
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee.
    Azpiazu C; Bosch J; Viñuela E; Medrzycki P; Teper D; Sgolastra F
    Sci Rep; 2019 Sep; 9(1):13770. PubMed ID: 31551470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam.
    Pilling E; Campbell P; Coulson M; Ruddle N; Tornier I
    PLoS One; 2013; 8(10):e77193. PubMed ID: 24194871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pesticide mixtures detected in crop and non-target wild plant pollen and nectar.
    Zioga E; White B; Stout JC
    Sci Total Environ; 2023 Jun; 879():162971. PubMed ID: 36958551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thiamethoxam: Long-term effects following honey bee colony-level exposure and implications for risk assessment.
    Thompson H; Overmyer J; Feken M; Ruddle N; Vaughan S; Scorgie E; Bocksch S; Hill M
    Sci Total Environ; 2019 Mar; 654():60-71. PubMed ID: 30439695
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of Pesticides in Bee Pollen: Validation of a Multiresidue High-Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Method and Testing Pollen Samples of Selected Botanical Origin.
    Végh R; Sörös C; Majercsik N; Sipos L
    J Agric Food Chem; 2022 Feb; 70(5):1507-1515. PubMed ID: 35080874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neonicotinoids transference from the field to the hive by honey bees: Towards a pesticide residues biomonitor.
    Niell S; Jesús F; Pérez N; Pérez C; Pareja L; Abbate S; Carrasco-Letelier L; Díaz S; Mendoza Y; Cesio V; Heinzen H
    Sci Total Environ; 2017 Mar; 581-582():25-31. PubMed ID: 28073057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition.
    Hesselbach H; Scheiner R
    Sci Rep; 2018 Mar; 8(1):4954. PubMed ID: 29563522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling Effects of Honeybee Behaviors on the Distribution of Pesticide in Nectar within a Hive and Resultant in-Hive Exposure.
    Rumkee JCO; Becher MA; Thorbek P; Osborne JL
    Environ Sci Technol; 2017 Jun; 51(12):6908-6917. PubMed ID: 28485584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple routes of pesticide exposure for honey bees living near agricultural fields.
    Krupke CH; Hunt GJ; Eitzer BD; Andino G; Given K
    PLoS One; 2012; 7(1):e29268. PubMed ID: 22235278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nectar quality changes the ecological costs of chemically defended pollen.
    Francis JS; Acevedo CR; Muth F; Leonard AS
    Curr Biol; 2019 Jul; 29(14):R679-R680. PubMed ID: 31336081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Different effects of pesticides on transcripts of the endocrine regulation and energy metabolism in honeybee foragers from different colonies.
    Christen V
    Sci Rep; 2023 Feb; 13(1):1985. PubMed ID: 36737645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Herbivory and Time Since Flowering Shape Floral Rewards and Pollinator-Pathogen Interactions.
    Aguirre LA; Davis JK; Stevenson PC; Adler LS
    J Chem Ecol; 2020 Oct; 46(10):978-986. PubMed ID: 32876829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Bayesian generalized log-normal model to dynamically evaluate the distribution of pesticide residues in soil associated with population health risks.
    Li Z
    Environ Int; 2018 Dec; 121(Pt 1):620-634. PubMed ID: 30312965
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling pesticide residues in tobacco leaves for improving life cycle inventory analysis of pesticides in the cigarette industry.
    Li Z
    Sci Total Environ; 2022 Nov; 845():157267. PubMed ID: 35820521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen.
    Zafeiraki E; Kasiotis KM; Nisianakis P; Manea-Karga E; Machera K
    Food Chem Toxicol; 2022 Mar; 161():112826. PubMed ID: 35063474
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness.
    Xun E; Zhang Y; Zhao J; Guo J
    Ecotoxicol Environ Saf; 2017 Nov; 145():235-243. PubMed ID: 28738207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving pesticide uptake modeling and management in potatoes: A simple and approximate phloem-adjusted model.
    Li Z
    J Environ Manage; 2021 Oct; 296():113180. PubMed ID: 34225049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.