BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35421852)

  • 21. Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation.
    Evans ID; Palmisano S; Croft RJ
    Bioelectromagnetics; 2021 Feb; 42(2):146-158. PubMed ID: 33440463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating Current Density Modeling of Non-Invasive Eye and Brain Electrical Stimulation Using Phosphene Thresholds.
    Sabel BA; Kresinsky A; Cardenas-Morales L; Haueisen J; Hunold A; Dannhauer M; Antal A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2133-2141. PubMed ID: 34648453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of gamma tACS over the M1 region and cerebellar hemisphere does not depend on current intensity.
    Miyaguchi S; Otsuru N; Kojima S; Yokota H; Saito K; Inukai Y; Onishi H
    J Clin Neurosci; 2019 Jul; 65():54-58. PubMed ID: 30954355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation.
    Spampinato D; Avci E; Rothwell J; Rocchi L
    Brain Stimul; 2021; 14(2):277-283. PubMed ID: 33482375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation.
    Turi Z; Ambrus GG; Janacsek K; Emmert K; Hahn L; Paulus W; Antal A
    Restor Neurol Neurosci; 2013; 31(3):275-85. PubMed ID: 23478342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcranial alternating current stimulation modulates spontaneous low frequency fluctuations as measured with fMRI.
    Cabral-Calderin Y; Williams KA; Opitz A; Dechent P; Wilke M
    Neuroimage; 2016 Nov; 141():88-107. PubMed ID: 27393419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphene Attributes Depend on Frequency and Intensity of Retinal tACS.
    Kvašňák E; Orendáčová M; Vránová J
    Physiol Res; 2022 Aug; 71(4):561-571. PubMed ID: 35770470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization.
    Lorenz R; Simmons LE; Monti RP; Arthur JL; Limal S; Laakso I; Leech R; Violante IR
    Brain Stimul; 2019; 12(6):1484-1489. PubMed ID: 31289013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: A systematic evaluation.
    Batsikadze G; Rezaee Z; Chang DI; Gerwig M; Herlitze S; Dutta A; Nitsche MA; Timmann D
    Brain Stimul; 2019; 12(5):1177-1186. PubMed ID: 31040077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor.
    Mehta AR; Pogosyan A; Brown P; Brittain JS
    Brain Stimul; 2015; 8(2):260-8. PubMed ID: 25499037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects on motor learning of transcranial alternating current stimulation applied over the primary motor cortex and cerebellar hemisphere.
    Miyaguchi S; Inukai Y; Matsumoto Y; Miyashita M; Takahashi R; Otsuru N; Onishi H
    J Clin Neurosci; 2020 Aug; 78():296-300. PubMed ID: 32402616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum.
    Wessel MJ; Draaisma LR; Hummel FC
    Cerebellum; 2023 Feb; 22(1):120-128. PubMed ID: 35060078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cerebellar Lobules Optimal Stimulation (CLOS): A Computational Pipeline to Optimize Cerebellar Lobule-Specific Electric Field Distribution.
    Rezaee Z; Dutta A
    Front Neurosci; 2019; 13():266. PubMed ID: 31031578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electric field envelope focality in superficial brain areas with linear alignment montage in temporal interference stimulation.
    Hirata A; Akazawa Y; Kodera S; Otsuru N; Laakso I
    Comput Biol Med; 2024 Jun; 178():108697. PubMed ID: 38850958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS).
    Ramaraju S; Roula MA; McCarthy PW
    J Neural Eng; 2018 Feb; 15(1):016019. PubMed ID: 28925375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gamma-transcranial alternating current stimulation on the cerebellum and supplementary motor area improves bimanual motor skill.
    Miyaguchi S; Inukai Y; Mitsumoto S; Otsuru N; Onishi H
    Behav Brain Res; 2022 Apr; 424():113805. PubMed ID: 35182606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational pipeline to find lobule-specific electric field distribution during non-invasive cerebellar stimulation.
    Rezaee Z; Ruszala B; Dutta A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1191-1196. PubMed ID: 31374791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cerebellar transcranial alternating current stimulation modulates human gait rhythm.
    Koganemaru S; Mikami Y; Matsuhashi M; Truong DQ; Bikson M; Kansaku K; Mima T
    Neurosci Res; 2020 Jul; 156():265-270. PubMed ID: 31812652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner.
    Miyaguchi S; Otsuru N; Kojima S; Yokota H; Saito K; Inukai Y; Onishi H
    Neurosci Lett; 2019 Feb; 694():64-68. PubMed ID: 30445151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the effects of transcranial alternating current stimulation on primary somatosensory cortex.
    Manzo N; Guerra A; Giangrosso M; Belvisi D; Leodori G; Berardelli A; Conte A
    Sci Rep; 2020 Oct; 10(1):17129. PubMed ID: 33051523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.