BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35421923)

  • 1. The dynamic alteration of transcriptional regulation by crucial TFs during tumorigenesis of gastric cancer.
    Yu B; Dai W; Pang L; Sang Q; Li F; Yu J; Feng H; Li J; Hou J; Yan C; Su L; Zhu Z; Li YY; Liu B
    Mol Med; 2022 Apr; 28(1):41. PubMed ID: 35421923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis.
    Cao MS; Liu BY; Dai WT; Zhou WX; Li YX; Li YY
    Am J Cancer Res; 2015; 5(9):2605-25. PubMed ID: 26609471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential networking meta-analysis of gastric cancer across Asian and American racial groups.
    Dai W; Li Q; Liu BY; Li YX; Li YY
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):51. PubMed ID: 29745833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation analysis reveals dysfunctional regulatory mechanism involving transcription factors and microRNAs in gastric carcinogenesis.
    Li Q; Li J; Dai W; Li YX; Li YY
    Artif Intell Med; 2017 Mar; 77():12-22. PubMed ID: 28545608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microarray profile analysis identifies ETS1 as potential biomarker regulated by miR-23b and modulates TCF4 in gastric cancer.
    Mei D; Qi Y; Xia Y; Ma J; Hu H; Ai J; Chen L; Wu N; Liao D
    World J Surg Oncol; 2021 Oct; 19(1):311. PubMed ID: 34686186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional Regulatory Network Analysis for Gastric Cancer Based on mRNA Microarray.
    Wang Y
    Pathol Oncol Res; 2017 Oct; 23(4):785-791. PubMed ID: 28078605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development.
    Chia NY; Deng N; Das K; Huang D; Hu L; Zhu Y; Lim KH; Lee MH; Wu J; Sam XX; Tan GS; Wan WK; Yu W; Gan A; Tan AL; Tay ST; Soo KC; Wong WK; Dominguez LT; Ng HH; Rozen S; Goh LK; Teh BT; Tan P
    Gut; 2015 May; 64(5):707-19. PubMed ID: 25053715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer.
    Yang C; Gong A
    Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215
    [No Abstract]   [Full Text] [Related]  

  • 9. Construction of miRNA-mRNA-TF Regulatory Network for Diagnosis of Gastric Cancer.
    Fu Z; Xu Y; Chen Y; Lv H; Chen G; Chen Y
    Biomed Res Int; 2021; 2021():9121478. PubMed ID: 34840985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hub genes and construction of an mRNA-miRNA-lncRNA network of gastric carcinoma using integrated bioinformatics analysis.
    Wei G; Dong Y; He Z; Qiu H; Wu Y; Chen Y
    PLoS One; 2021; 16(12):e0261728. PubMed ID: 34968391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying key stage-specific genes and transcription factors for gastric cancer based on RNA-sequencing data.
    Wang Y
    Medicine (Baltimore); 2017 Jan; 96(4):e5691. PubMed ID: 28121923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expressional profiles of transcription factors in the progression of Helicobacter pylori-associated gastric carcinoma based on protein/DNA array analysis.
    Hu TZ; Huang LH; Xu CX; Liu XM; Wang Y; Xiao J; Zhou L; Luo L; Jiang XX
    Med Oncol; 2015 Dec; 32(12):265. PubMed ID: 26563475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis.
    Li T; Gao X; Han L; Yu J; Li H
    World J Surg Oncol; 2018 Jun; 16(1):114. PubMed ID: 29921304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentially Expressed mRNAs and Their Long Noncoding RNA Regulatory Network with
    Liu S; Yin H; Zheng S; Chu A; Li Y; Xing C; Yuan Y; Gong Y
    Biomed Res Int; 2020; 2020():3012193. PubMed ID: 33282942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GATA6 suppresses migration and metastasis by regulating the miR-520b/CREB1 axis in gastric cancer.
    Liu H; Du F; Sun L; Wu Q; Wu J; Tong M; Wang X; Wang Q; Cao T; Gao X; Cao J; Wu N; Nie Y; Fan D; Lu Y; Zhao X
    Cell Death Dis; 2019 Jan; 10(2):35. PubMed ID: 30674866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DCGL v2.0: an R package for unveiling differential regulation from differential co-expression.
    Yang J; Yu H; Liu BH; Zhao Z; Liu L; Ma LX; Li YX; Li YY
    PLoS One; 2013; 8(11):e79729. PubMed ID: 24278165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing dynamic regulatory programs in mouse lung development and their potential association with tumourigenesis via miRNA-TF-mRNA circuits.
    Liu J; Ye X; Wu FX
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S11. PubMed ID: 24564886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcription factor RUNX2 fuels YAP1 signaling and gastric cancer tumorigenesis.
    Guo Z; Zhou K; Wang Q; Huang Y; Ji J; Peng Y; Zhang X; Zheng T; Zhang Z; Chong D; Yang Z
    Cancer Sci; 2021 Sep; 112(9):3533-3544. PubMed ID: 34160112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comprehensive upstream transcription and downstream targeting regulation network of miRNAs reveal potential diagnostic roles in gastric cancer.
    Zhang C; Zhang CD; Liang Y; Wu KZ; Pei JP; Dai DQ
    Life Sci; 2020 Jul; 253():117741. PubMed ID: 32360623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.