BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35422220)

  • 1. Progress in Metabolic Studies of Gastric Cancer and Therapeutic Implications.
    Romo-Perez A; Dominguez-Gomez G; Chavez-Blanco A; Taja-Chayeb L; Gonzalez-Fierro A; Diaz-Romero C; Lopez-Basave HN; Duenas-Gonzalez A
    Curr Cancer Drug Targets; 2022; 22(9):703-716. PubMed ID: 35422220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse Model for Efficient Simultaneous Targeting of Glycolysis, Glutaminolysis, and De Novo Synthesis of Fatty Acids in Colon Cancer.
    Schcolnik-Cabrera A; Dueñas-Gonzalez A
    Methods Mol Biol; 2021; 2174():45-69. PubMed ID: 32813244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal.
    Romo-Perez A; Domínguez-Gómez G; Chávez-Blanco A; González-Fierro A; Correa-Basurto J; Dueñas-González A
    Curr Med Chem; 2023 Jun; ():. PubMed ID: 37287286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication.
    Sanchez EL; Pulliam TH; Dimaio TA; Thalhofer AB; Delgado T; Lagunoff M
    J Virol; 2017 May; 91(10):. PubMed ID: 28275189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids.
    Cervantes-Madrid D; Dueñas-González A
    Oncol Rep; 2015 Sep; 34(3):1533-42. PubMed ID: 26134042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of differing metabolic dysregulations, a glucose driven and another fatty acid centric in gastric cancer subtypes.
    Balakrishnan K; Ganesan K
    Funct Integr Genomics; 2020 Nov; 20(6):813-824. PubMed ID: 32949316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy metabolism: a new target for gastric cancer treatment.
    Liu J; Bai X; Zhang M; Wu S; Xiao J; Zeng X; Li Y; Zhang Z
    Clin Transl Oncol; 2024 Feb; 26(2):338-351. PubMed ID: 37477784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression.
    Xu X; Li J; Sun X; Guo Y; Chu D; Wei L; Li X; Yang G; Liu X; Yao L; Zhang J; Shen L
    Oncotarget; 2015 Sep; 6(28):26161-76. PubMed ID: 26317652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caveolin-1 in the regulation of cell metabolism: a cancer perspective.
    Nwosu ZC; Ebert MP; Dooley S; Meyer C
    Mol Cancer; 2016 Nov; 15(1):71. PubMed ID: 27852311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development.
    Teuwen LA; Geldhof V; Carmeliet P
    Dev Biol; 2019 Mar; 447(1):90-102. PubMed ID: 29224892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic reprogramming as a feast for virus replication.
    Polcicova K; Badurova L; Tomaskova J
    Acta Virol; 2020; 64(2):201-215. PubMed ID: 32551788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis.
    Zhang X; Li Z; Xuan Z; Xu P; Wang W; Chen Z; Wang S; Sun G; Xu J; Xu Z
    J Exp Clin Cancer Res; 2018 Dec; 37(1):320. PubMed ID: 30572959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells.
    Leighton B; Curi R; Hussein A; Newsholme EA
    FEBS Lett; 1987 Dec; 225(1-2):93-6. PubMed ID: 3691808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ANGPTL4 regulate glutamine metabolism and fatty acid oxidation in nonsmall cell lung cancer cells.
    Xiao S; Nai-Dong W; Jin-Xiang Y; Long T; Xiu-Rong L; Hong G; Jie-Cheng Y; Fei Z
    J Cell Mol Med; 2022 Apr; 26(7):1876-1885. PubMed ID: 35285130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Cancer Metabolism and Current Anti-Cancer Drugs.
    Sukjoi W; Ngamkham J; Attwood PV; Jitrapakdee S
    Adv Exp Med Biol; 2021; 1286():15-48. PubMed ID: 33725343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IDO decreases glycolysis and glutaminolysis by activating GCN2K, while it increases fatty acid oxidation by activating AhR, thus preserving CD4+ T‑cell survival and proliferation.
    Eleftheriadis T; Pissas G; Liakopoulos V; Stefanidis I
    Int J Mol Med; 2018 Jul; 42(1):557-568. PubMed ID: 29693118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral activation of cellular metabolism.
    Sanchez EL; Lagunoff M
    Virology; 2015 May; 479-480():609-18. PubMed ID: 25812764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Krebs to clinic: glutamine metabolism to cancer therapy.
    Altman BJ; Stine ZE; Dang CV
    Nat Rev Cancer; 2016 Oct; 16(10):619-34. PubMed ID: 27492215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Analysis of Lymphatic Endothelial Cells.
    Yu P; Alves TC; Kibbey RG; Simons M
    Methods Mol Biol; 2018; 1846():325-334. PubMed ID: 30242770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.