These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35422457)

  • 1. Ion-pair reorganization regulates reactivity in photoredox catalysts.
    Earley JD; Zieleniewska A; Ripberger HH; Shin NY; Lazorski MS; Mast ZJ; Sayre HJ; McCusker JK; Scholes GD; Knowles RR; Reid OG; Rumbles G
    Nat Chem; 2022 Jul; 14(7):746-753. PubMed ID: 35422457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular Charge Transfer and Ion Pairing in N,N-Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization.
    Lim CH; Ryan MD; McCarthy BG; Theriot JC; Sartor SM; Damrauer NH; Musgrave CB; Miyake GM
    J Am Chem Soc; 2017 Jan; 139(1):348-355. PubMed ID: 27973788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis.
    Joshi-Pangu A; Lévesque F; Roth HG; Oliver SF; Campeau LC; Nicewicz D; DiRocco DA
    J Org Chem; 2016 Aug; 81(16):7244-9. PubMed ID: 27454776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
    Schreier MR; Guo X; Pfund B; Okamoto Y; Ward TR; Kerzig C; Wenger OS
    Acc Chem Res; 2022 May; 55(9):1290-1300. PubMed ID: 35414170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis.
    Farney EP; Chapman SJ; Swords WB; Torelli MD; Hamers RJ; Yoon TP
    J Am Chem Soc; 2019 Apr; 141(15):6385-6391. PubMed ID: 30897327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
    Mills IN; Porras JA; Bernhard S
    Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron Density Difference Analysis on the Oxidative and Reductive Quenching Cycles of Classical Iridium and Ruthenium Photoredox Catalysts.
    Medina E; Pinter B
    J Phys Chem A; 2020 May; 124(21):4223-4234. PubMed ID: 32364751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis.
    Kelly CB; Patel NR; Primer DN; Jouffroy M; Tellis JC; Molander GA
    Nat Protoc; 2017 Mar; 12(3):472-492. PubMed ID: 28151464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCET-Based Ligand Limits Charge Recombination with an Ir(III) Photoredox Catalyst.
    Sayre H; Ripberger HH; Odella E; Zieleniewska A; Heredia DA; Rumbles G; Scholes GD; Moore TA; Moore AL; Knowles RR
    J Am Chem Soc; 2021 Aug; 143(33):13034-13043. PubMed ID: 34378919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible Light-Induced Photoredox Construction of Trifluoromethylated Quaternary Carbon Centers from Trifluoromethylated Tertiary Bromides.
    Huan F; Chen QY; Guo Y
    J Org Chem; 2016 Aug; 81(16):7051-63. PubMed ID: 27438228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox catalysis
    Lee YM; Nam W; Fukuzumi S
    Chem Sci; 2023 Apr; 14(16):4205-4218. PubMed ID: 37123199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
    Majek M; Jacobi von Wangelin A
    Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic photoredox catalysts for CO
    Kron KJ; Rodriguez-Katakura A; Regu P; Reed MN; Elhessen R; Mallikarjun Sharada S
    J Chem Phys; 2022 May; 156(18):184109. PubMed ID: 35568537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodide Photoredox and Bond Formation Chemistry.
    Troian-Gautier L; Swords WB; Meyer GJ
    Acc Chem Res; 2019 Jan; 52(1):170-179. PubMed ID: 30571102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of aryl sulfides via radical-radical cross coupling of electron-rich arenes using visible light photoredox catalysis.
    Das A; Maity M; Malcherek S; König B; Rehbein J
    Beilstein J Org Chem; 2018; 14():2520-2528. PubMed ID: 30344775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.