BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 35422534)

  • 1. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues.
    Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA
    Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium.
    Avazmohammadi R; Li DS; Leahy T; Shih E; Soares JS; Gorman JH; Gorman RC; Sacks MS
    Biomech Model Mechanobiol; 2018 Feb; 17(1):31-53. PubMed ID: 28861630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can machine learning accelerate soft material parameter identification from complex mechanical test data?
    Kakaletsis S; Lejeune E; Rausch MK
    Biomech Model Mechanobiol; 2023 Feb; 22(1):57-70. PubMed ID: 36229697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
    Donmazov S; Saruhan EN; Pekkan K; Piskin S
    Cardiovasc Eng Technol; 2024 Jul; ():. PubMed ID: 38956008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle.
    Ballit A; Dao TT
    Med Biol Eng Comput; 2022 Apr; 60(4):1177-1185. PubMed ID: 35244859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions.
    Bock FE; Keller S; Huber N; Klusemann B
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks.
    Buoso S; Joyce T; Kozerke S
    Med Image Anal; 2021 Jul; 71():102066. PubMed ID: 33951597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis.
    Wang Y; Sang J; Ao R; Ma Y; Fu B
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1190-1200. PubMed ID: 32772860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning approach for magnetic resonance image-based mouse brain modeling and fast computation in controlled cortical impact.
    Lai C; Chen Y; Wang T; Liu J; Wang Q; Du Y; Feng Y
    Med Biol Eng Comput; 2020 Nov; 58(11):2835-2844. PubMed ID: 32954460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-scale computational model for the passive mechanical behavior of right ventricular myocardium.
    Li DS; Mendiola EA; Avazmohammadi R; Sachse FB; Sacks MS
    J Mech Behav Biomed Mater; 2023 Jun; 142():105788. PubMed ID: 37060716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel machine learning based computational framework for homogenization of heterogeneous soft materials: application to liver tissue.
    Hashemi MS; Baniassadi M; Baghani M; George D; Remond Y; Sheidaei A
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1131-1142. PubMed ID: 31823106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications.
    Lauzeral N; Borzacchiello D; Kugler M; George D; Rémond Y; Hostettler A; Chinesta F
    Comput Methods Programs Biomed; 2019 Mar; 170():95-106. PubMed ID: 30712607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.