These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35422534)
1. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach. Zhang W; Li DS; Bui-Thanh T; Sacks MS Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534 [TBL] [Abstract][Full Text] [Related]
2. Neural Network Approaches for Soft Biological Tissue and Organ Simulations. Sacks MS; Motiwale S; Goodbrake C; Zhang W J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891 [TBL] [Abstract][Full Text] [Related]
3. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues. Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259 [TBL] [Abstract][Full Text] [Related]
4. An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Avazmohammadi R; Li DS; Leahy T; Shih E; Soares JS; Gorman JH; Gorman RC; Sacks MS Biomech Model Mechanobiol; 2018 Feb; 17(1):31-53. PubMed ID: 28861630 [TBL] [Abstract][Full Text] [Related]
5. Can machine learning accelerate soft material parameter identification from complex mechanical test data? Kakaletsis S; Lejeune E; Rausch MK Biomech Model Mechanobiol; 2023 Feb; 22(1):57-70. PubMed ID: 36229697 [TBL] [Abstract][Full Text] [Related]
6. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials. Donmazov S; Saruhan EN; Pekkan K; Piskin S Cardiovasc Eng Technol; 2024 Oct; 15(5):522-549. PubMed ID: 38956008 [TBL] [Abstract][Full Text] [Related]
7. Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle. Ballit A; Dao TT Med Biol Eng Comput; 2022 Apr; 60(4):1177-1185. PubMed ID: 35244859 [TBL] [Abstract][Full Text] [Related]
8. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
9. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics. Liang L; Liu M; Elefteriades J; Sun W Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344 [TBL] [Abstract][Full Text] [Related]
10. Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks. Buoso S; Joyce T; Kozerke S Med Image Anal; 2021 Jul; 71():102066. PubMed ID: 33951597 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions. Bock FE; Keller S; Huber N; Klusemann B Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920078 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Wang Y; Sang J; Ao R; Ma Y; Fu B Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1190-1200. PubMed ID: 32772860 [TBL] [Abstract][Full Text] [Related]
13. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT. Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519 [TBL] [Abstract][Full Text] [Related]
14. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression. Alexander SL; Weerasooriya T J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873 [TBL] [Abstract][Full Text] [Related]
16. A machine learning approach for magnetic resonance image-based mouse brain modeling and fast computation in controlled cortical impact. Lai C; Chen Y; Wang T; Liu J; Wang Q; Du Y; Feng Y Med Biol Eng Comput; 2020 Nov; 58(11):2835-2844. PubMed ID: 32954460 [TBL] [Abstract][Full Text] [Related]
18. A multi-scale computational model for the passive mechanical behavior of right ventricular myocardium. Li DS; Mendiola EA; Avazmohammadi R; Sachse FB; Sacks MS J Mech Behav Biomed Mater; 2023 Jun; 142():105788. PubMed ID: 37060716 [TBL] [Abstract][Full Text] [Related]
19. A novel machine learning based computational framework for homogenization of heterogeneous soft materials: application to liver tissue. Hashemi MS; Baniassadi M; Baghani M; George D; Remond Y; Sheidaei A Biomech Model Mechanobiol; 2020 Jun; 19(3):1131-1142. PubMed ID: 31823106 [TBL] [Abstract][Full Text] [Related]
20. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. Gao H; Wang H; Berry C; Luo X; Griffith BE Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1199-222. PubMed ID: 24799090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]