These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 35422534)

  • 41. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robust automatic hexahedral cartilage meshing framework enables population-based computational studies of the knee.
    Gibbons KD; Malbouby V; Alvarez O; Fitzpatrick CK
    Front Bioeng Biotechnol; 2022; 10():1059003. PubMed ID: 36568304
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptive surrogate modeling for expedited estimation of nonlinear tissue properties through inverse finite element analysis.
    Halloran JP; Erdemir A
    Ann Biomed Eng; 2011 Sep; 39(9):2388-97. PubMed ID: 21544674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine learning modeling of lung mechanics: Assessing the variability and propagation of uncertainty in respiratory-system compliance and airway resistance.
    Barahona J; Sahli Costabal F; Hurtado DE
    Comput Methods Programs Biomed; 2024 Jan; 243():107888. PubMed ID: 37948910
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II - Nonlinear Examples.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1998; 1(2):151-170. PubMed ID: 11264802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations.
    Un K; Spilker RL
    J Biomech Eng; 2006 Dec; 128(6):934-42. PubMed ID: 17154696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection and modelling of contacts in explicit finite-element simulation of soft tissue biomechanics.
    Johnsen SF; Taylor ZA; Han L; Hu Y; Clarkson MJ; Hawkes DJ; Ourselin S
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1873-91. PubMed ID: 25559760
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulation of hyperelastic materials in real-time using deep learning.
    Mendizabal A; Márquez-Neila P; Cotin S
    Med Image Anal; 2020 Jan; 59():101569. PubMed ID: 31704451
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1997; 1(1):25-46. PubMed ID: 11264795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Can physics-informed neural networks beat the finite element method?
    Grossmann TG; Komorowska UJ; Latz J; Schönlieb CB
    IMA J Appl Math; 2024 Jan; 89(1):143-174. PubMed ID: 38933736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep learning for biomechanical modeling of facial tissue deformation in orthognathic surgical planning.
    Lampen N; Kim D; Fang X; Xu X; Kuang T; Deng HH; Barber JC; Gateno J; Xia J; Yan P
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):945-952. PubMed ID: 35362849
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A data-driven reduced-order surrogate model for entire elastoplastic simulations applied to representative volume elements.
    Vijayaraghavan S; Wu L; Noels L; Bordas SPA; Natarajan S; Beex LAA
    Sci Rep; 2023 Aug; 13(1):12781. PubMed ID: 37550337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integration of Surrogate Huxley Muscle Model into Finite Element Solver for Simulation of the Cardiac Cycle.
    Milicevic B; Simic V; Milosevic M; Ivanovic M; Stojanovic B; Kojic M; Filipovic N
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3943-3946. PubMed ID: 36086276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bridging Finite Element and Machine Learning Modeling: Stress Prediction of Arterial Walls in Atherosclerosis.
    Madani A; Bakhaty A; Kim J; Mubarak Y; Mofrad MRK
    J Biomech Eng; 2019 Aug; 141(8):. PubMed ID: 30912802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated model discovery for muscle using constitutive recurrent neural networks.
    Wang LM; Linka K; Kuhl E
    J Mech Behav Biomed Mater; 2023 Sep; 145():106021. PubMed ID: 37473576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.