These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35423019)

  • 1. Edge length-dependent interlayer friction of graphene.
    Zhang H; Li Y; Qu J; Zhang J
    RSC Adv; 2020 Dec; 11(1):328-334. PubMed ID: 35423019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge orientation dependent nanoscale friction.
    Zhang H; Chang T
    Nanoscale; 2018 Feb; 10(5):2447-2453. PubMed ID: 29336464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes.
    Guo Z; Chang T; Guo X; Gao H
    Phys Rev Lett; 2011 Sep; 107(10):105502. PubMed ID: 21981509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Nanoscale Friction Behaviors of Graphene on Gold Substrates Using Molecular Dynamics.
    Zhu P; Li R
    Nanoscale Res Lett; 2018 Feb; 13(1):34. PubMed ID: 29396735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.
    Tocci G; Joly L; Michaelides A
    Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralow friction of ink-jet printed graphene flakes.
    Buzio R; Gerbi A; Uttiya S; Bernini C; Del Rio Castillo AE; Palazon F; Siri AS; Pellegrini V; Pellegrino L; Bonaccorso F
    Nanoscale; 2017 Jun; 9(22):7612-7624. PubMed ID: 28540370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of High Friction at Graphene Step Edges on Graphite.
    Chen Z; Khajeh A; Martini A; Kim SH
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1895-1902. PubMed ID: 33347272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials.
    Ouyang W; Mandelli D; Urbakh M; Hod O
    Nano Lett; 2018 Sep; 18(9):6009-6016. PubMed ID: 30109806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Velocity-dependent friction enhances tribomechanical differences between monolayer and multilayer graphene.
    Ptak F; Almeida CM; Prioli R
    Sci Rep; 2019 Oct; 9(1):14555. PubMed ID: 31601937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Atomic Corrugation on Adhesion and Friction: A Model Study with Graphene Step Edges.
    Chen Z; Vazirisereshk MR; Khajeh A; Martini A; Kim SH
    J Phys Chem Lett; 2019 Nov; 10(21):6455-6461. PubMed ID: 31584830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic simulation of the load dependence of nanoscale friction on suspended and supported graphene.
    Ye Z; Martini A
    Langmuir; 2014 Dec; 30(49):14707-11. PubMed ID: 25419859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial friction of vdW heterostructures affected by in-plane strain.
    Zhou X; Chen P; Xu RG; Zhang C; Zhang J
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36174390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant and Tunable Anisotropy of Nanoscale Friction in Graphene.
    Almeida CM; Prioli R; Fragneaud B; Cançado LG; Paupitz R; Galvão DS; De Cicco M; Menezes MG; Achete CA; Capaz RB
    Sci Rep; 2016 Aug; 6():31569. PubMed ID: 27534691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Physical and Chemical Contributions to Friction: A Comparative Study of Chemically Inert and Active Graphene Step Edges.
    Chen Z; Khajeh A; Martini A; Kim SH
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):30007-30015. PubMed ID: 32496047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced nanoscale friction on fluorinated graphene.
    Kwon S; Ko JH; Jeon KJ; Kim YH; Park JY
    Nano Lett; 2012 Dec; 12(12):6043-8. PubMed ID: 22720882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.