These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35423019)

  • 21. Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study.
    Ying P; Natan A; Hod O; Urbakh M
    ACS Nano; 2024 Apr; 18(14):10133-10141. PubMed ID: 38546136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.
    Kwon S; Lee KE; Lee H; Koh SJ; Ko JH; Kim YH; Kim SO; Park JY
    J Phys Chem B; 2018 Jan; 122(2):543-547. PubMed ID: 28926260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of water confined in a graphene nanochannel: dependence of friction on graphene chirality.
    Yang L; Guo Y
    Nanotechnology; 2020 Mar; 31(23):235702. PubMed ID: 32066118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Double-Vacancy Controlled Friction on Graphene: The Enhancement of Atomic Pinning.
    Shen B; Lin Q; Chen S; Huang Z; Ji Z; Cao A; Zhang Z
    Langmuir; 2019 Oct; 35(40):12898-12907. PubMed ID: 31513424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures.
    Liao M; Nicolini P; Du L; Yuan J; Wang S; Yu H; Tang J; Cheng P; Watanabe K; Taniguchi T; Gu L; Claerbout VEP; Silva A; Kramer D; Polcar T; Yang R; Shi D; Zhang G
    Nat Mater; 2022 Jan; 21(1):47-53. PubMed ID: 34354215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS
    Vazirisereshk MR; Ye H; Ye Z; Otero-de-la-Roza A; Zhao MQ; Gao Z; Johnson ATC; Johnson ER; Carpick RW; Martini A
    Nano Lett; 2019 Aug; 19(8):5496-5505. PubMed ID: 31267757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscale friction and wear of a polymer coated with graphene.
    Vacher R; de Wijn AS
    Beilstein J Nanotechnol; 2022; 13():63-73. PubMed ID: 35096496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collective superlubricity of graphene flakes.
    van Wijk MM; de Wijn AS; Fasolino A
    J Phys Condens Matter; 2016 Apr; 28(13):134007. PubMed ID: 26934115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vanishing stick-slip friction in few-layer graphenes: the thickness effect.
    Xu L; Ma TB; Hu YZ; Wang H
    Nanotechnology; 2011 Jul; 22(28):285708. PubMed ID: 21646695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Friction laws at the nanoscale.
    Mo Y; Turner KT; Szlufarska I
    Nature; 2009 Feb; 457(7233):1116-9. PubMed ID: 19242472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorination of graphene enhances friction due to increased corrugation.
    Li Q; Liu XZ; Kim SP; Shenoy VB; Sheehan PE; Robinson JT; Carpick RW
    Nano Lett; 2014 Sep; 14(9):5212-7. PubMed ID: 25072968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonon dissipation in friction with commensurate-incommensurate transition between graphene membranes.
    Dong Y; Tao Y; Feng R; Zhang Y; Duan Z; Cao H
    Nanotechnology; 2020 Apr; 31(28):285711. PubMed ID: 32252042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomistic Mechanism of Friction-Force Independence on the Normal Load and Other Friction Laws for Dynamic Structural Superlubricity.
    Brilliantov NV; Tsukanov AA; Grebenko AK; Nasibulin AG; Ostanin IA
    Phys Rev Lett; 2023 Dec; 131(26):266201. PubMed ID: 38215361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frictional characteristics of nano-confined water mediated hole-doped single-layer graphene on silica surface.
    Chu ED; Wang PH; Hong YZ; Woon WY; Chiu HC
    Nanotechnology; 2019 Jan; 30(4):045706. PubMed ID: 30479310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Switchable friction enabled by nanoscale self-assembly on graphene.
    Gallagher P; Lee M; Amet F; Maksymovych P; Wang J; Wang S; Lu X; Zhang G; Watanabe K; Taniguchi T; Goldhaber-Gordon D
    Nat Commun; 2016 Feb; 7():10745. PubMed ID: 26902595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecules on rails: friction anisotropy and preferential sliding directions of organic nanocrystallites on two-dimensional materials.
    Vasić B; Stanković I; Matković A; Kratzer M; Ganser C; Gajić R; Teichert C
    Nanoscale; 2018 Oct; 10(39):18835-18845. PubMed ID: 30277249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.