These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 35423095)
1. Improving the hydrothermal stability of zeolite Y by La Vu HT; Goepel M; Gläser R RSC Adv; 2021 Jan; 11(10):5568-5579. PubMed ID: 35423095 [TBL] [Abstract][Full Text] [Related]
2. Silylated Zeolites With Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. Vu HT; Harth FM; Wilde N Front Chem; 2018; 6():143. PubMed ID: 29868552 [TBL] [Abstract][Full Text] [Related]
3. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source. Feng J; Gu X; Xue Y; Han Y; Lu X Sci Total Environ; 2018 Aug; 633():426-432. PubMed ID: 29579653 [TBL] [Abstract][Full Text] [Related]
4. Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Popova M; Djinović P; Ristić A; Lazarova H; Dražić G; Pintar A; Balu AM; Novak Tušar N Front Chem; 2018; 6():285. PubMed ID: 30065923 [TBL] [Abstract][Full Text] [Related]
5. Zirconium Phosphate-Pillared Zeolite MCM-36 for Green Production of γ-Valerolactone from Levulinic Acid via Catalytic Transfer Hydrogenation. Hou P; Su H; Jin K; Li Q; Yan W Molecules; 2024 Aug; 29(16):. PubMed ID: 39202858 [TBL] [Abstract][Full Text] [Related]
6. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131 [TBL] [Abstract][Full Text] [Related]
7. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151 [TBL] [Abstract][Full Text] [Related]
8. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. Yun WC; Yang MT; Lin KA J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993 [TBL] [Abstract][Full Text] [Related]
9. Conversion of levulinic acid to γ-valerolactone over Ru/Al Wang R; Chen L; Zhang X; Zhang Q; Li Y; Wang C; Ma L RSC Adv; 2018 Dec; 8(71):40989-40995. PubMed ID: 35557899 [TBL] [Abstract][Full Text] [Related]
10. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K Front Chem; 2021; 9():725175. PubMed ID: 34712649 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G Front Chem; 2020; 8():221. PubMed ID: 32373576 [TBL] [Abstract][Full Text] [Related]
12. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ-Valerolactone: Catalytic Activity and Stability. Yu Z; Lu X; Bai H; Xiong J; Feng W; Ji N Chem Asian J; 2020 Apr; 15(8):1182-1201. PubMed ID: 32012471 [TBL] [Abstract][Full Text] [Related]
13. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related]
14. Room-Temperature Asymmetric Transfer Hydrogenation of Biomass-Derived Levulinic Acid to Optically Pure γ-Valerolactone Using a Ruthenium Catalyst. Shende VS; Raut AB; Raghav P; Kelkar AA; Bhanage BM ACS Omega; 2019 Nov; 4(21):19491-19498. PubMed ID: 31763574 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528 [TBL] [Abstract][Full Text] [Related]
16. Hydrophobic Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Levulinic Acid to γ-Valerolactone. Tsou YJ; To TD; Chiang YC; Lee JF; Kumar R; Chung PW; Lin YC ACS Appl Mater Interfaces; 2020 Dec; 12(49):54851-54861. PubMed ID: 33232108 [TBL] [Abstract][Full Text] [Related]
17. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water. Xu Y; Liang Y; Guo H; Qi X Int J Biol Macromol; 2023 Jun; 240():124451. PubMed ID: 37062379 [TBL] [Abstract][Full Text] [Related]
18. Ni-Cu and Ni-Co-Modified Fly Ash Zeolite Catalysts for Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone. Popova M; Dimitrov M; Boycheva S; Dimitrov I; Ublekov F; Koseva N; Atanasova G; Karashanova D; Szegedi Á Molecules; 2023 Dec; 29(1):. PubMed ID: 38202681 [TBL] [Abstract][Full Text] [Related]
19. Surface-sealing encapsulation of phosphotungstic acid in microporous UiO-66 as a bifunctional catalyst for transfer hydrogenation of levulinic acid to γ-valerolactone. Tan H; Rong S; Zong Z; Zhang P; Zhao R; Song F; Cui H; Chen ZN; Yi W; Zhang F Phys Chem Chem Phys; 2023 Jul; 25(27):18215-18223. PubMed ID: 37394949 [TBL] [Abstract][Full Text] [Related]
20. Control and Impact of Metal Loading Heterogeneities at the Nanoscale on the Performance of Pt/Zeolite Y Catalysts for Alkane Hydroconversion. van der Wal LI; Oenema J; Smulders LCJ; Samplonius NJ; Nandpersad KR; Zečević J; de Jong KP ACS Catal; 2021 Apr; 11(7):3842-3855. PubMed ID: 33833901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]