These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 35423095)
21. Cascade reaction engineering on zirconia-supported mesoporous MFI zeolites with tunable Lewis-Brønsted acid sites: a case of the one-pot conversion of furfural to γ-valerolactone. Kim KD; Kim J; Teoh WY; Kim JC; Huang J; Ryoo R RSC Adv; 2020 Sep; 10(58):35318-35328. PubMed ID: 35515682 [TBL] [Abstract][Full Text] [Related]
22. Amine-promoted Ru Yang Y; Yang F; Wang H; Zhou B; Hao S J Colloid Interface Sci; 2021 Jan; 581(Pt A):167-176. PubMed ID: 32771728 [TBL] [Abstract][Full Text] [Related]
23. Zeolite-Encaged Pd-Mn Nanocatalysts for CO Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613 [TBL] [Abstract][Full Text] [Related]
24. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid. Obregón I; Gandarias I; Al-Shaal MG; Mevissen C; Arias PL; Palkovits R ChemSusChem; 2016 Sep; 9(17):2488-95. PubMed ID: 27483194 [TBL] [Abstract][Full Text] [Related]
25. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond. Omoruyi U; Page S; Hallett J; Miller PW ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831 [TBL] [Abstract][Full Text] [Related]
26. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite. Deng C; Zhang J; Dong L; Huang M; Bin Li ; Jin G; Gao J; Zhang F; Fan M; Zhang L; Gong Y Sci Rep; 2016 Mar; 6():23382. PubMed ID: 26987306 [TBL] [Abstract][Full Text] [Related]
27. Micro/mesoporous LTL derived materials for catalytic transfer hydrogenation and acid reactions of bio-based levulinic acid and furanics. Antunes MM; Silva AF; Fernandes A; Ribeiro F; Neves P; Pillinger M; Valente AA Front Chem; 2022; 10():1006981. PubMed ID: 36247668 [TBL] [Abstract][Full Text] [Related]
28. Impact of Low-Temperature Water Exposure and Removal on Zeolite HY. Zornes A; Abdul Rahman NB; Das OR; Gomez LA; Crossley S; Resasco DE; White JL J Am Chem Soc; 2024 Jan; 146(1):1132-1143. PubMed ID: 38156885 [TBL] [Abstract][Full Text] [Related]
29. In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. Shao YR; Zhou L; Yu L; Li ZF; Li YT; Li W; Hu TL ACS Appl Mater Interfaces; 2022 Apr; 14(15):17195-17207. PubMed ID: 35384659 [TBL] [Abstract][Full Text] [Related]
30. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex. Yi Y; Liu H; Xiao LP; Wang B; Song G ChemSusChem; 2018 May; 11(9):1474-1478. PubMed ID: 29575709 [TBL] [Abstract][Full Text] [Related]
31. A study on the performance of coke resistive cerium modified zeolite Y catalyst for the pyrolysis of scrap tyres in a two-stage fixed bed reactor. Khalil U; Vongsvivut J; Shahabuddin M; Samudrala SP; Srivatsa SC; Bhattacharya S Waste Manag; 2020 Feb; 102():139-148. PubMed ID: 31677521 [TBL] [Abstract][Full Text] [Related]
33. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield. Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864 [TBL] [Abstract][Full Text] [Related]
34. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization. Zheng J; Zhu J; Xu X; Wang W; Li J; Zhao Y; Tang K; Song Q; Qi X; Kong D; Tang Y Sci Rep; 2016 Jul; 6():28898. PubMed ID: 27377401 [TBL] [Abstract][Full Text] [Related]
35. Influence of Nanoscale Intimacy and Zeolite Micropore Size on the Performance of Bifunctional Catalysts for Oenema J; Harmel J; Vélez RP; Meijerink MJ; Eijsvogel W; Poursaeidesfahani A; Vlugt TJH; Zečević J; de Jong KP ACS Catal; 2020 Dec; 10(23):14245-14257. PubMed ID: 33312750 [TBL] [Abstract][Full Text] [Related]
36. Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sieves. Mazumdar NJ; Deshmukh G; Rovea A; Kumar P; Arredondo-Arechavala M; Manyar H R Soc Open Sci; 2022 Jul; 9(7):220078. PubMed ID: 35911198 [TBL] [Abstract][Full Text] [Related]
37. A Comparative Study of Electrochemical Reduction of Levulinic Acid on Various Electrodes in Organic Solvents. Burmakina GV; Zimonin DV; Verpekin VV; Sychev VV; Rubaylo AI Chemphyschem; 2024 Sep; 25(18):e202300900. PubMed ID: 38856848 [TBL] [Abstract][Full Text] [Related]
38. Mechanism of CO Min HY; Xiong JS; Liu TH; Fu S; Hu CW; Yang HQ Phys Chem Chem Phys; 2024 May; 26(20):14613-14623. PubMed ID: 38739028 [TBL] [Abstract][Full Text] [Related]
39. Conversion of Glycerol to Value Added Products in a Semi-Continuous Batch Reactor Using Noble Metals Supported on ZSM-11 Zeolite. Diguilio E; Renzini MS; Pierella LB; Domine ME Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33671418 [TBL] [Abstract][Full Text] [Related]
40. Citric Acid-Treated Zeolite Y (CY)/Zeolite Beta Composites as Supports for Vacuum Gas Oil Hydrocracking Catalysts: High Yield Production of Highly-Aromatic Heavy Naphtha and Low-BMCI Value Tail Oil. Wei Q; Zhang J; Liu X; Zhang P; Wang S; Wang Y; Zhang Z; Zhang T; Zhou Y Front Chem; 2019; 7():705. PubMed ID: 31737595 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]