These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35423106)
1. Designing high energy density flow batteries by tuning active-material thermodynamics. Pahari SK; Gokoglan TC; Visayas BRB; Woehl J; Golen JA; Howland R; Mayes ML; Agar E; Cappillino PJ RSC Adv; 2021 Jan; 11(10):5432-5443. PubMed ID: 35423106 [TBL] [Abstract][Full Text] [Related]
2. Computational and experimental investigation of the effect of cation structure on the solubility of anionic flow battery active-materials. Visayas BRB; Pahari SK; Gokoglan TC; Golen JA; Agar E; Cappillino PJ; Mayes ML Chem Sci; 2021 Dec; 12(48):15892-15907. PubMed ID: 35024113 [TBL] [Abstract][Full Text] [Related]
3. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes. McCormack PM; Koenig GM; Geise GM ACS Appl Mater Interfaces; 2021 Oct; 13(41):49331-49339. PubMed ID: 34609838 [TBL] [Abstract][Full Text] [Related]
5. Liquid Nitrobenzene-Based Anolyte Materials for High-Current and -Energy-Density Nonaqueous Redox Flow Batteries. Xu D; Zhang C; Zhen Y; Li Y ACS Appl Mater Interfaces; 2021 Aug; 13(30):35579-35584. PubMed ID: 34297540 [TBL] [Abstract][Full Text] [Related]
6. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480 [TBL] [Abstract][Full Text] [Related]
7. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Wang ZL; Xu D; Xu JJ; Zhang XB Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780 [TBL] [Abstract][Full Text] [Related]
8. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667 [TBL] [Abstract][Full Text] [Related]
9. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte. Mitchell NH; Elgrishi N J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204 [TBL] [Abstract][Full Text] [Related]
10. Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries. Cekic-Laskovic I; von Aspern N; Imholt L; Kaymaksiz S; Oldiges K; Rad BR; Winter M Top Curr Chem (Cham); 2017 Apr; 375(2):37. PubMed ID: 28299728 [TBL] [Abstract][Full Text] [Related]
11. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors. Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751 [TBL] [Abstract][Full Text] [Related]
12. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Kwon G; Ko Y; Kim Y; Kim K; Kang K Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126 [TBL] [Abstract][Full Text] [Related]
13. Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits. Chen R Chem Asian J; 2023 Jan; 18(1):e202201024. PubMed ID: 36367282 [TBL] [Abstract][Full Text] [Related]
14. Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries. Zhan X; Li MM; Weller JM; Sprenkle VL; Li G Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204774 [TBL] [Abstract][Full Text] [Related]
15. The lightest organic radical cation for charge storage in redox flow batteries. Huang J; Pan B; Duan W; Wei X; Assary RS; Su L; Brushett FR; Cheng L; Liao C; Ferrandon MS; Wang W; Zhang Z; Burrell AK; Curtiss LA; Shkrob IA; Moore JS; Zhang L Sci Rep; 2016 Aug; 6():32102. PubMed ID: 27558638 [TBL] [Abstract][Full Text] [Related]
16. High-capacity polysulfide-polyiodide nonaqueous redox flow batteries with a ceramic membrane. Chen M; Chen H Nanoscale Adv; 2023 Jan; 5(2):435-442. PubMed ID: 36756257 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Aqueous/Nonaqueous Water-in-Bisalt Electrolyte Enables Safe Dual Ion Batteries. Zhu J; Xu Y; Fu Y; Xiao D; Li Y; Liu L; Wang Y; Zhang Q; Li J; Yan X Small; 2020 Apr; 16(17):e1905838. PubMed ID: 32227436 [TBL] [Abstract][Full Text] [Related]
18. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165 [TBL] [Abstract][Full Text] [Related]
19. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
20. Techno-Economic Comparison of Stationary Storage and Battery-Electric Buses for Mitigating Solar Intermittency. Ahmed A; Massier T Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]