These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35423106)

  • 21. Fluorination Enables Simultaneous Improvements of a Dialkoxybenzene-Based Redoxmer for Nonaqueous Redox Flow Batteries.
    Bheemireddy SR; Li Z; Zhang J; Agarwal G; Robertson LA; Shkrob IA; Assary RS; Zhang Z; Wei X; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28834-28841. PubMed ID: 35709493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A metal-free organic-inorganic aqueous flow battery.
    Huskinson B; Marshak MP; Suh C; Er S; Gerhardt MR; Galvin CJ; Chen X; Aspuru-Guzik A; Gordon RG; Aziz MJ
    Nature; 2014 Jan; 505(7482):195-8. PubMed ID: 24402280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling.
    Milton M; Cheng Q; Yang Y; Nuckolls C; Hernández Sánchez R; Sisto TJ
    Nano Lett; 2017 Dec; 17(12):7859-7863. PubMed ID: 29125302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries.
    Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biredox Eutectic Electrolytes Derived from Organic Redox-Active Molecules: High-Energy Storage Systems.
    Zhang C; Qian Y; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Angew Chem Int Ed Engl; 2019 May; 58(21):7045-7050. PubMed ID: 30938026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the Redox Chemistry of Organosulfides Towards Stable Molecule Design in Nonaqueous Energy Storage Systems.
    Zhang L; Zhao B; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4322-4328. PubMed ID: 33170992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and Characterization of Lithium-Conducting Composite Polymer-Ceramic Membranes for Use in Nonaqueous Redox Flow Batteries.
    Ashraf Gandomi Y; Krasnikova IV; Akhmetov NO; Ovsyannikov NA; Pogosova MA; Matteucci NJ; Mallia CT; Neyhouse BJ; Fenton AM; Brushett FR; Stevenson KJ
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53746-53757. PubMed ID: 34734523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Smart Flow Electrosynthesis and Application of Organodisulfides in Redox Flow Batteries.
    Chen Q; Guo W; Fu Y
    Adv Sci (Weinh); 2022 Jan; 9(1):e2104036. PubMed ID: 34761570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives.
    Zhang Y; Liu S; Ji Y; Ma J; Yu H
    Adv Mater; 2018 Sep; 30(38):e1706310. PubMed ID: 29920792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Energy, Single-Ion-Mediated Nonaqueous Zinc-TEMPO Redox Flow Battery.
    Yu X; Yu WA; Manthiram A
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48654-48661. PubMed ID: 33064445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox Targeting-based Neutral Aqueous Flow Battery with High Energy Density and Low Cost.
    Yan S; Huang S; Xu H; Li L; Zou H; Ding M; Jia C; Wang Q
    ChemSusChem; 2023 Oct; 16(19):e202300710. PubMed ID: 37475569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device.
    Fan L; Lin K; Wang J; Ma R; Lu B
    Adv Mater; 2018 May; 30(20):e1800804. PubMed ID: 29603424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.
    Hendriks KH; Robinson SG; Braten MN; Sevov CS; Helms BA; Sigman MS; Minteer SD; Sanford MS
    ACS Cent Sci; 2018 Feb; 4(2):189-196. PubMed ID: 29532018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries.
    Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indolo[2,3-
    Zhang W; Walser-Kuntz R; Tracy JS; Schramm TK; Shee J; Head-Gordon M; Chen G; Helms BA; Sanford MS; Toste FD
    J Am Chem Soc; 2023 Aug; 145(34):18877-18887. PubMed ID: 37585274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in Bromine Complexing Agents for Zinc-Bromine Redox Flow Batteries.
    Jiménez-Blasco U; Arrebola JC; Caballero A
    Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.