These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 35423116)
41. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Ma L; Ju MG; Dai J; Zeng XC Nanoscale; 2018 Jun; 10(24):11314-11319. PubMed ID: 29897093 [TBL] [Abstract][Full Text] [Related]
42. First-principles study of the electronic structure and optical properties of C-doped SnS Yang N; Wang Y; Ji J; Shi Z; Liu G; Zhang G J Mol Model; 2024 Jan; 30(2):35. PubMed ID: 38206357 [TBL] [Abstract][Full Text] [Related]
43. Band gap engineering in penta-graphene by substitutional doping: first-principles calculations. Berdiyorov GR; Dixit G; Madjet ME J Phys Condens Matter; 2016 Nov; 28(47):475001. PubMed ID: 27633017 [TBL] [Abstract][Full Text] [Related]
44. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
45. The relationship between the electronic structure and thermoelectric properties of Zintl compounds M2Zn5As4 (M = K, Rb). Yang G; Yang J; Yan Y; Wang Y Phys Chem Chem Phys; 2014 Mar; 16(12):5661-6. PubMed ID: 24522347 [TBL] [Abstract][Full Text] [Related]
46. First-principles prediction of structural stability and thermoelectric properties of SrGaSnH. Haque E; Rahaman M RSC Adv; 2021 Jan; 11(6):3304-3314. PubMed ID: 35424316 [TBL] [Abstract][Full Text] [Related]
47. Effect of metal doping on the visible light absorption, electronic structure and mechanical properties of non-toxic metal halide CsGeCl Rahaman MZ; Akther Hossain AKM RSC Adv; 2018 Sep; 8(58):33010-33018. PubMed ID: 35548143 [TBL] [Abstract][Full Text] [Related]
48. Optoelectronic Properties of Low-Bandgap Halide Perovskites for Solar Cell Applications. Dey K; Roose B; Stranks SD Adv Mater; 2021 Oct; 33(40):e2102300. PubMed ID: 34432925 [TBL] [Abstract][Full Text] [Related]
49. High Thermoelectric Power Factor of a Diketopyrrolopyrrole-Based Low Bandgap Polymer via Finely Tuned Doping Engineering. Jung IH; Hong CT; Lee UH; Kang YH; Jang KS; Cho SY Sci Rep; 2017 Mar; 7():44704. PubMed ID: 28317929 [TBL] [Abstract][Full Text] [Related]
50. Manganese doping mechanism in a CsPbI An J; Jiang H; Tian Y; Xue H; Tang F Phys Chem Chem Phys; 2019 Nov; 21(42):23552-23558. PubMed ID: 31617523 [TBL] [Abstract][Full Text] [Related]
51. The bandgap of sulfur-doped Ag De AK; Kamal N; Kumar U; Jatav N; Sinha I Phys Chem Chem Phys; 2023 Jan; 25(3):2320-2330. PubMed ID: 36598031 [TBL] [Abstract][Full Text] [Related]
52. C Kumar P; Vahidzadeh E; Thakur UK; Kar P; Alam KM; Goswami A; Mahdi N; Cui K; Bernard GM; Michaelis VK; Shankar K J Am Chem Soc; 2019 Apr; 141(13):5415-5436. PubMed ID: 30762369 [TBL] [Abstract][Full Text] [Related]
53. Band Gap Reduction in Ferroelectric BaTiO Rohj RK; Hossain A; Mahadevan P; Sarma DD Front Chem; 2021; 9():682979. PubMed ID: 34109158 [TBL] [Abstract][Full Text] [Related]
55. Indium doping-assisted monolayer Ga Li P; Dong L; Li C; Lu B; Yang C; Peng B; Wang W; Miao Y; Liu W Nanoscale; 2023 Jul; 15(28):12105-12115. PubMed ID: 37424434 [TBL] [Abstract][Full Text] [Related]