These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 35423355)
1. Complex magnetism of the two-dimensional antiferromagnetic Ge Ramadan FZ; José Dos Santos F; Drissi LB; Lounis S RSC Adv; 2021 Feb; 11(15):8654-8663. PubMed ID: 35423355 [TBL] [Abstract][Full Text] [Related]
2. Alloying Driven Antiferromagnetic Skyrmions on NiPS Wang Y; Xing J; Zhao Y; Wang Y; Zhao J; Jiang X Adv Sci (Weinh); 2024 Jul; 11(25):e2401048. PubMed ID: 38647400 [TBL] [Abstract][Full Text] [Related]
3. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy. Hervé M; Dupé B; Lopes R; Böttcher M; Martins MD; Balashov T; Gerhard L; Sinova J; Wulfhekel W Nat Commun; 2018 Mar; 9(1):1015. PubMed ID: 29523833 [TBL] [Abstract][Full Text] [Related]
4. Ferrimagnetic Skyrmions in Topological Insulator/Ferrimagnet Heterostructures. Wu H; Groß F; Dai B; Lujan D; Razavi SA; Zhang P; Liu Y; Sobotkiewich K; Förster J; Weigand M; Schütz G; Li X; Gräfe J; Wang KL Adv Mater; 2020 Aug; 32(34):e2003380. PubMed ID: 32666575 [TBL] [Abstract][Full Text] [Related]
5. Bloch-type magnetic skyrmions in two-dimensional lattices. Du W; Dou K; He Z; Dai Y; Huang B; Ma Y Mater Horiz; 2023 Oct; 10(11):5071-5078. PubMed ID: 37668420 [TBL] [Abstract][Full Text] [Related]
6. Strain-induced magnetic phase transition, magnetic anisotropy switching and bilayer antiferromagnetic skyrmions in van der Waals magnet CrTe Feng D; Shen Z; Xue Y; Guan Z; Xiao R; Song C Nanoscale; 2023 Jan; 15(4):1561-1567. PubMed ID: 36537877 [TBL] [Abstract][Full Text] [Related]
7. Néel-Type Elliptical Skyrmions in a Laterally Asymmetric Magnetic Multilayer. Cui B; Yu D; Shao Z; Liu Y; Wu H; Nan P; Zhu Z; Wu C; Guo T; Chen P; Zhou HA; Xi L; Jiang W; Wang H; Liang S; Du H; Wang KL; Wang W; Wu K; Han X; Zhang G; Yang H; Yu G Adv Mater; 2021 Mar; 33(12):e2006924. PubMed ID: 33599001 [TBL] [Abstract][Full Text] [Related]
8. Hole doping induced ferromagnetism and Dzyaloshinskii-Moriya interaction in the two-dimensional group-IVA oxides. Li P; Ga Y; Cui Q; Liang J; Yu D; Yang H J Phys Condens Matter; 2023 Mar; 35(20):. PubMed ID: 36867875 [TBL] [Abstract][Full Text] [Related]
9. Anisotropic Dzyaloshinskii-Moriya Interaction and Topological Magnetism in Two-Dimensional Magnets Protected by Cui Q; Zhu Y; Ga Y; Liang J; Li P; Yu D; Cui P; Yang H Nano Lett; 2022 Mar; 22(6):2334-2341. PubMed ID: 35266723 [TBL] [Abstract][Full Text] [Related]
10. Theoretical Prediction of Antiferromagnetic Skyrmion Crystal in Janus Monolayer CrSi Dou K; Du W; He Z; Dai Y; Huang B; Ma Y ACS Nano; 2022 Nov; ():. PubMed ID: 36448916 [TBL] [Abstract][Full Text] [Related]
11. Eliminating Skyrmion Hall Effect in Ferromagnetic Skyrmions. Zhang X; Wan G; Zhang J; Zhang YF; Pan J; Du S Nano Lett; 2024 Sep; 24(35):10796-10804. PubMed ID: 39190460 [TBL] [Abstract][Full Text] [Related]
12. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. Büttner F; Lemesh I; Schneider M; Pfau B; Günther CM; Hessing P; Geilhufe J; Caretta L; Engel D; Krüger B; Viefhaus J; Eisebitt S; Beach GSD Nat Nanotechnol; 2017 Nov; 12(11):1040-1044. PubMed ID: 28967891 [TBL] [Abstract][Full Text] [Related]
13. Zero-field magnetic skyrmions in exchange-biased ferromagnetic-antiferromagnetic bilayers. Pankratova M; Eriksson O; Bergman A J Phys Condens Matter; 2024 Jun; 36(38):. PubMed ID: 38848725 [TBL] [Abstract][Full Text] [Related]
14. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions. Hu Y; Chi X; Li X; Liu Y; Du A Sci Rep; 2017 Nov; 7(1):16079. PubMed ID: 29167506 [TBL] [Abstract][Full Text] [Related]
15. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy. von Bergmann K; Kubetzka A; Pietzsch O; Wiesendanger R J Phys Condens Matter; 2014 Oct; 26(39):394002. PubMed ID: 25214495 [TBL] [Abstract][Full Text] [Related]
16. Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy. Zhang Y; Luo S; Yan B; Ou-Yang J; Yang X; Chen S; Zhu B; You L Nanoscale; 2017 Jul; 9(29):10212-10218. PubMed ID: 28613338 [TBL] [Abstract][Full Text] [Related]
17. Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots. Tejo F; Riveros A; Escrig J; Guslienko KY; Chubykalo-Fesenko O Sci Rep; 2018 Apr; 8(1):6280. PubMed ID: 29674646 [TBL] [Abstract][Full Text] [Related]
18. Anatomy of Hidden Dzyaloshinskii-Moriya Interactions and Topological Spin Textures in Centrosymmetric Crystals. Cui Q; Zhu Y; Jiang J; Cui P; Yang H; Chang K; Wang K Nano Lett; 2024 May; ():. PubMed ID: 38739551 [TBL] [Abstract][Full Text] [Related]
19. Defect-Engineered Dzyaloshinskii-Moriya Interaction and Electric-Field-Switchable Topological Spin Texture in SrRuO Lu J; Si L; Zhang Q; Tian C; Liu X; Song C; Dong S; Wang J; Cheng S; Qu L; Zhang K; Shi Y; Huang H; Zhu T; Mi W; Zhong Z; Gu L; Held K; Wang L; Zhang J Adv Mater; 2021 Aug; 33(33):e2102525. PubMed ID: 34223676 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous magnetic merons in a half-metallic Mn Shen Z; Xue Y; Wu Z; Song C Phys Chem Chem Phys; 2022 Nov; 24(45):27612-27618. PubMed ID: 36263656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]