These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35423557)

  • 1. First-principles thermal transport in amorphous Ge
    Duong TQ; Bouzid A; Massobrio C; Ori G; Boero M; Martin E
    RSC Adv; 2021 Mar; 11(18):10747-10752. PubMed ID: 35423557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters.
    Zheng J; Zhu S; Xu P; Dunham S; Majumdar A
    ACS Appl Mater Interfaces; 2020 May; 12(19):21827-21836. PubMed ID: 32297737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Study of Novel Phase-Change Heterostructures.
    Piombo R; Ritarossi S; Mazzarello R
    Adv Sci (Weinh); 2024 Aug; 11(29):e2402375. PubMed ID: 38812119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization Kinetics of GeSbTe Phase-Change Nanoparticles Resolved by Ultrafast Calorimetry.
    Chen B; Ten Brink GH; Palasantzas G; Kooi BJ
    J Phys Chem C Nanomater Interfaces; 2017 Apr; 121(15):8569-8578. PubMed ID: 28479941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the local atomic structure on the thermal conductivity of amorphous Ge
    Guerboub M; Wansi Wendji SD; Massobrio C; Bouzid A; Boero M; Ori G; Martin E
    J Chem Phys; 2023 Feb; 158(8):084504. PubMed ID: 36859083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices.
    Aryana K; Gaskins JT; Nag J; Stewart DA; Bai Z; Mukhopadhyay S; Read JC; Olson DH; Hoglund ER; Howe JM; Giri A; Grobis MK; Hopkins PE
    Nat Commun; 2021 Feb; 12(1):774. PubMed ID: 33536411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-change behavior of RuSbTe thin film for photonic applications with amplitude-only modulation.
    Hatayama S; Makino K; Saito Y
    Sci Rep; 2024 Apr; 14(1):8839. PubMed ID: 38632394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.
    Warzoha RJ; Fleischer AS
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12868-76. PubMed ID: 24983698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles.
    Chen B; Ten Brink GH; Palasantzas G; Kooi BJ
    Sci Rep; 2016 Dec; 6():39546. PubMed ID: 27996054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting.
    Wu S; Li T; Tong Z; Chao J; Zhai T; Xu J; Yan T; Wu M; Xu Z; Bao H; Deng T; Wang R
    Adv Mater; 2019 Dec; 31(49):e1905099. PubMed ID: 31621971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Conductivity Measurement of Flexible Composite Phase-Change Materials Based on the Steady-State Method.
    Feng Z; Xiao X
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering Thermal and Electrical Properties of Sb
    Kwon H; Khan AI; Perez C; Asheghi M; Pop E; Goodson KE
    Nano Lett; 2021 Jul; 21(14):5984-5990. PubMed ID: 34270270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocavity tuning and formation controlled by the phase change of sub-micron-square GST patterns on Si photonic crystals.
    Uemura T; Chiba H; Yoda T; Moritake Y; Tanaka Y; Ono M; Kuramochi E; Notomi M
    Opt Express; 2024 Jan; 32(2):1802-1824. PubMed ID: 38297724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials.
    Williams JD; Peterson GP
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic phonons and anisotropic thermal conductivity in hexagonal Ge
    Mukhopadhyay S; Lindsay L; Singh DJ
    Sci Rep; 2016 Nov; 6():37076. PubMed ID: 27848985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Accurate Thermal Modeling of Phase Change Material-Based Photonic Devices.
    Aryana K; Kim HJ; Popescu CC; Vitale S; Bae HB; Lee T; Gu T; Hu J
    Small; 2023 Dec; 19(50):e2304145. PubMed ID: 37649187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromorphic Photonics Based on Phase Change Materials.
    Li T; Li Y; Wang Y; Liu Y; Liu Y; Wang Z; Miao R; Han D; Hui Z; Li W
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.
    Lv W; Henry A
    Sci Rep; 2016 Oct; 6():35720. PubMed ID: 27767082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Energy Switching of Phase Change Materials Using a 2D Thermal Boundary Layer.
    Ning J; Wang Y; Teo TY; Huang CC; Zeimpekis I; Morgan K; Teo SL; Hewak DW; Bosman M; Simpson RE
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41225-41234. PubMed ID: 36043468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.