These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35423733)

  • 21. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives.
    Song C; Zhang C; Zhang S; Lin H; Kim Y; Ramakrishnan M; Du Y; Zhang Y; Zheng H; Barceló D
    Sci Total Environ; 2020 Dec; 749():141972. PubMed ID: 33370925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A concise review on waste biomass valorization through thermochemical conversion.
    Joshi NC; Sinha S; Bhatnagar P; Nath Y; Negi B; Kumar V; Gururani P
    Curr Res Microb Sci; 2024; 6():100237. PubMed ID: 38706494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Waste biorefineries: Enabling circular economies in developing countries.
    Nizami AS; Rehan M; Waqas M; Naqvi M; Ouda OKM; Shahzad K; Miandad R; Khan MZ; Syamsiro M; Ismail IMI; Pant D
    Bioresour Technol; 2017 Oct; 241():1101-1117. PubMed ID: 28579178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A technical review of bioenergy and resource recovery from municipal solid waste.
    Nanda S; Berruti F
    J Hazard Mater; 2021 Feb; 403():123970. PubMed ID: 33265011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy.
    Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ
    Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review on the demineralisation of pre- and post-pyrolysis biomass and tyre wastes.
    Iraola-Arregui I; Van Der Gryp P; Görgens JF
    Waste Manag; 2018 Sep; 79():667-688. PubMed ID: 30343799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of poultry wastes into energy feedstocks.
    Kantarli IC; Kabadayi A; Ucar S; Yanik J
    Waste Manag; 2016 Oct; 56():530-9. PubMed ID: 27440220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review.
    Dharmaraj S; Ashokkumar V; Chew KW; Chia SR; Show PL; Ngamcharussrivichai C
    Int J Hydrogen Energy; 2022 Dec; 47(100):42051-42074. PubMed ID: 34776598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perspectives for Thermochemical Conversions of Lignocellulosic Biomass.
    Stöcker M
    Small; 2023 Jun; ():e2302495. PubMed ID: 37344347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Livestock waste-to-bioenergy generation opportunities.
    Cantrell KB; Ducey T; Ro KS; Hunt PG
    Bioresour Technol; 2008 Nov; 99(17):7941-53. PubMed ID: 18485701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preservation of Microalgae, Lignocellulosic Biomass Blends by Ensiling to Enable Consistent Year-Round Feedstock Supply for Thermochemical Conversion to Biofuels.
    Wahlen BD; Wendt LM; Murphy A; Thompson VS; Hartley DS; Dempster T; Gerken H
    Front Bioeng Biotechnol; 2020; 8():316. PubMed ID: 32351950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pilot-scale co-processing of lignocellulosic biomass, algae, shellfish waste via thermochemical approach: Recent progress and future directions.
    Yek PNY; Wan Mahari WA; Kong SH; Foong SY; Peng W; Ting H; Liew RK; Xia C; Sonne C; Tabatabaei M; Almomani F; Aghbashlo M; Lam SS
    Bioresour Technol; 2022 Mar; 347():126687. PubMed ID: 35007740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress in thermochemical conversion of aquatic weeds in shellfish aquaculture for biofuel generation: Technical and economic perspectives.
    Azwar E; Wan Mahari WA; Rastegari H; Tabatabaei M; Peng W; Tsang YF; Park YK; Chen WH; Lam SS
    Bioresour Technol; 2022 Jan; 344(Pt A):126202. PubMed ID: 34710598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomass for thermochemical conversion: targets and challenges.
    Tanger P; Field JL; Jahn CE; Defoort MW; Leach JE
    Front Plant Sci; 2013; 4():218. PubMed ID: 23847629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrolysis of waste oils for the production of biofuels: A critical review.
    Su G; Ong HC; Mofijur M; Mahlia TMI; Ok YS
    J Hazard Mater; 2022 Feb; 424(Pt B):127396. PubMed ID: 34673394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere.
    Zaini IN; García López C; Pretz T; Yang W; Jönsson PG
    Waste Manag; 2019 Sep; 97():149-163. PubMed ID: 31447022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.
    Qasim M; Ansari TM; Hussain M
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23657-23666. PubMed ID: 29047055
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.