These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35423734)

  • 1. Nano-particle transport and the prediction of a valid area to be trapped based on a plasmonic antenna array.
    Lu CG; Hu XF; Yuan ZR; Cui YP
    RSC Adv; 2021 Mar; 11(20):12102-12106. PubMed ID: 35423734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-optical conveyor belt, part I: Theory.
    Hansen P; Zheng Y; Ryan J; Hesselink L
    Nano Lett; 2014 Jun; 14(6):2965-70. PubMed ID: 24807203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Manipulation of nanoparticles by simultaneous electric and magnetic field enhancement within diabolo nanoantenna.
    Hameed N; Nouho Ali A; Baida FI
    Sci Rep; 2017 Oct; 7(1):12806. PubMed ID: 28993675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-optical conveyor belt with waveguide-coupled excitation.
    Wang G; Ying Z; Ho HP; Huang Y; Zou N; Zhang X
    Opt Lett; 2016 Feb; 41(3):528-31. PubMed ID: 26907415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas.
    Du G; Lu Y; Lankanath D; Hou X; Chen F
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.
    Panaretos AH; Werner DH
    Opt Express; 2015 Apr; 23(7):8298-309. PubMed ID: 25968668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic non-concentric nanorings array as an unidirectional nano-optical conveyor belt actuated by polarization rotation.
    Jiang M; Wang G; Jiao W; Ying Z; Zou N; Ho HP; Sun T; Zhang X
    Opt Lett; 2017 Jan; 42(2):259-262. PubMed ID: 28081087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying the different coupling regimes for a plasmonic particle in a plasmonic trap.
    Kim J; Martin OJF
    Opt Express; 2019 Dec; 27(26):38670-38682. PubMed ID: 31878630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas.
    Zhang W; Huang L; Santschi C; Martin OJ
    Nano Lett; 2010 Mar; 10(3):1006-11. PubMed ID: 20151698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical conveyor belt based on a plasmonic metasurface with polarization dependent hot spot arrays.
    Zhang C; Jiang M; Chang Y; Liu Y; Wang G; Xu F; Lu Y
    Opt Lett; 2021 Apr; 46(7):1522-1525. PubMed ID: 33793470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional arbitrary nano-manipulation on a plasmonic metasurface.
    Jiang M; Wang G; Xu W; Ji W; Zou N; Ho HP; Zhang X
    Opt Lett; 2018 Apr; 43(7):1602-1605. PubMed ID: 29601040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trapping and manipulation of nanoparticles using multifocal optical vortex metalens.
    Ma Y; Rui G; Gu B; Cui Y
    Sci Rep; 2017 Nov; 7(1):14611. PubMed ID: 29097711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives.
    Urban AS; Carretero-Palacios S; Lutich AA; Lohmüller T; Feldmann J; Jäckel F
    Nanoscale; 2014 May; 6(9):4458-74. PubMed ID: 24664273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-optically controlled holographic plasmonic vortex array for multiple metallic particles manipulation.
    Ju Z; Ma H; Zhang S; Xie X; Min C; Zhang Y; Yuan X
    Opt Lett; 2023 Dec; 48(24):6577-6580. PubMed ID: 38099803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Array of plasmonic Vivaldi antennas coupled to silicon waveguides for wireless networks through on-chip optical technology - WiNOT.
    Calò G; Bellanca G; Alam B; Kaplan AE; Bassi P; Petruzzelli V
    Opt Express; 2018 Nov; 26(23):30267-30277. PubMed ID: 30469902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.