These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35423734)

  • 21. Core-Shell Nano-Antenna Configurations for Array Formation with More Stability Having Conventional and Non-Conventional Directivity and Propagation Behavior.
    Hayat Q; Geng J; Liang X; Jin R; Ur Rehman S; He C; Wu H; Nawaz H
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33406685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic nanopatch array for optical integrated circuit applications.
    Qu SW; Nie ZP
    Sci Rep; 2013 Nov; 3():3172. PubMed ID: 24201454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic graded nano-disks as nano-optical conveyor belt.
    Kang Z; Lu H; Chen J; Chen K; Xu F; Ho HP
    Opt Express; 2014 Aug; 22(16):19567-72. PubMed ID: 25321039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waveguide-fed optical hybrid plasmonic patch nano-antenna.
    Yousefi L; Foster AC
    Opt Express; 2012 Jul; 20(16):18326-35. PubMed ID: 23038383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna.
    Mao L; Ren Y; Lu Y; Lei X; Jiang K; Li K; Wang Y; Cui C; Wen X; Wang P
    Sci Rep; 2016 Mar; 6():23751. PubMed ID: 27009383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directivity-Enhanced Detection of a Single Nanoparticle Using a Plasmonic Slot Antenna.
    Wu B; Lou Y; Wu D; Min Q; Wan X; Zhang H; Yu Y; Ma J; Si G; Pang Y
    Nano Lett; 2022 Mar; 22(6):2374-2380. PubMed ID: 35285643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of mutual couplings in a concentric circular ring plasmonic optical antenna array.
    Gu G; Li L; Zhang Y; Kemsri T; Lu X
    Sci Rep; 2017 Sep; 7(1):10996. PubMed ID: 28887469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Guided transport of nanoparticles by plasmonic nanowires.
    Yang C; Pan D; Tong L; Xu H
    Nanoscale; 2016 Nov; 8(46):19195-19199. PubMed ID: 27830859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting.
    Roxworthy BJ; Ko KD; Kumar A; Fung KH; Chow EK; Liu GL; Fang NX; Toussaint KC
    Nano Lett; 2012 Feb; 12(2):796-801. PubMed ID: 22208881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces.
    Nan F; Yan Z
    ACS Nano; 2020 Jun; 14(6):7602-7609. PubMed ID: 32428394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
    Zhang L; Dou X; Min C; Zhang Y; Du L; Xie Z; Shen J; Zeng Y; Yuan X
    Nanoscale; 2016 May; 8(18):9756-63. PubMed ID: 27117313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps.
    Zheng Y; Ryan J; Hansen P; Cheng YT; Lu TJ; Hesselink L
    Nano Lett; 2014 Jun; 14(6):2971-6. PubMed ID: 24807058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonant optical antennas.
    Mühlschlegel P; Eisler HJ; Martin OJ; Hecht B; Pohl DW
    Science; 2005 Jun; 308(5728):1607-9. PubMed ID: 15947182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy.
    Andres-Arroyo A; Wang F; Toe WJ; Reece P
    Biomed Opt Express; 2015 Sep; 6(9):3646-54. PubMed ID: 26417530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.
    Shoji T; Tsuboi Y
    J Phys Chem Lett; 2014 Sep; 5(17):2957-67. PubMed ID: 26278243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic meta-screen for alleviating the trade-offs in the near-field optics.
    Wang Y; Wong AM; Markley L; Helmy AS; Eleftheriades GV
    Opt Express; 2009 Jul; 17(15):12351-61. PubMed ID: 19654637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.