These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35423868)
1. A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral imaging. Wang F; Wang C; Song S RSC Adv; 2021 Apr; 11(22):13636-13643. PubMed ID: 35423868 [TBL] [Abstract][Full Text] [Related]
2. Study on starch content detection and visualization of potato based on hyperspectral imaging. Wang F; Wang C; Song S; Xie S; Kang F Food Sci Nutr; 2021 Aug; 9(8):4420-4430. PubMed ID: 34401090 [TBL] [Abstract][Full Text] [Related]
3. Detection of Anthocyanins in Potatoes Using Micro-Hyperspectral Images Based on Convolutional Neural Networks. Wang F; Li Q; Deng W; Wang C; Han L Foods; 2024 Jul; 13(13):. PubMed ID: 38998602 [TBL] [Abstract][Full Text] [Related]
4. Rapid Screen of the Color and Water Content of Fresh-Cut Potato Tuber Slices Using Hyperspectral Imaging Coupled with Multivariate Analysis. Xiao Q; Bai X; He Y Foods; 2020 Jan; 9(1):. PubMed ID: 31963170 [TBL] [Abstract][Full Text] [Related]
5. Integration of Partial Least Squares Regression and Hyperspectral Data Processing for the Nondestructive Detection of the Scaling Rate of Carp ( Wang H; Wang K; Zhu X; Zhang P; Yang J; Tan M Foods; 2020 Apr; 9(4):. PubMed ID: 32316086 [TBL] [Abstract][Full Text] [Related]
6. Application of hyperspectral imaging for spatial prediction of soluble solid content in sweet potato. Shao Y; Liu Y; Xuan G; Wang Y; Gao Z; Hu Z; Han X; Gao C; Wang K RSC Adv; 2020 Sep; 10(55):33148-33154. PubMed ID: 35515022 [TBL] [Abstract][Full Text] [Related]
7. [Rapid detection technology of chemical component content in Lycii Fructus based on hyperspectral technology]. Liu LL; Wang YY; Yang J; Zhang XB Zhongguo Zhong Yao Za Zhi; 2023 Aug; 48(16):4328-4336. PubMed ID: 37802859 [TBL] [Abstract][Full Text] [Related]
8. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system. Yuan R; Liu G; He J; Ma C; Cheng L; Fan N; Ban J; Li Y; Sun Y J Food Sci; 2020 May; 85(5):1403-1410. PubMed ID: 32304238 [TBL] [Abstract][Full Text] [Related]
9. Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data. Wang F; Wang C Foods; 2022 Oct; 11(19):. PubMed ID: 36230208 [TBL] [Abstract][Full Text] [Related]
10. [Study on the Rapid Evaluation of Total Volatile Basic Nitrogen (TVB-N) of Mutton by Hyperspectral Imaging Technique]. Zhu RG; Yao XD; Duan HW; Ma BX; Tang MX Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):806-10. PubMed ID: 27400528 [TBL] [Abstract][Full Text] [Related]
11. Application of Hyperspectral Imaging as a Nondestructive Technology for Identifying Tomato Maturity and Quantitatively Predicting Lycopene Content. Dai C; Sun J; Huang X; Zhang X; Tian X; Wang W; Sun J; Luan Y Foods; 2023 Aug; 12(15):. PubMed ID: 37569225 [TBL] [Abstract][Full Text] [Related]
12. Estimation Model for Maize Multi-Components Based on Hyperspectral Data. Xue H; Xu X; Meng X Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338856 [TBL] [Abstract][Full Text] [Related]
13. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands. Zhao MS; Wang T; Lu Y; Wang S; Wu Y PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071 [TBL] [Abstract][Full Text] [Related]
14. Rapid Detection of Volatile Oil in Yan H; Guo C; Shao Y; Ouyang Z Pharmacogn Mag; 2017; 13(51):439-445. PubMed ID: 28839369 [TBL] [Abstract][Full Text] [Related]
15. Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage. Yao K; Sun J; Cheng J; Xu M; Chen C; Zhou X; Dai C Foods; 2022 Jul; 11(14):. PubMed ID: 35885270 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Soluble-Solid Content in Citrus Fruit Using Visible-Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm. Kim MJ; Yu WH; Song DJ; Chun SW; Kim MS; Lee A; Kim G; Shin BS; Mo C Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475048 [TBL] [Abstract][Full Text] [Related]
17. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed. Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703 [TBL] [Abstract][Full Text] [Related]
18. Application of Hyperspectral Technology with Machine Learning for Brix Detection of Pastry Pears. Ouyang H; Tang L; Ma J; Pang T Plants (Basel); 2024 Apr; 13(8):. PubMed ID: 38674571 [TBL] [Abstract][Full Text] [Related]
19. Determination of hardness for maize kernels based on hyperspectral imaging. Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440 [TBL] [Abstract][Full Text] [Related]
20. Rapid Determination of Polysaccharides in Cistanche Tubulosa Using Near-Infrared Spectroscopy Combined with Machine Learning. Wang Y; Tian ZP; Xie JJ; Luo Y; Yao J; Shen J J AOAC Int; 2023 Jul; 106(4):1118-1125. PubMed ID: 36355447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]