These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35424085)
41. Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates. Jeon EH; Yang S; Kim Y; Kim N; Shin HJ; Baik J; Kim HS; Lee H Nanoscale Res Lett; 2015 Dec; 10(1):361. PubMed ID: 26377214 [TBL] [Abstract][Full Text] [Related]
42. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method. Habibi MH; Rahmati MH Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():160-4. PubMed ID: 25218225 [TBL] [Abstract][Full Text] [Related]
43. GaN/ZnO hybrid nanostructures for improved photocatalytic performance: One-step synthesis. Üstün T; Haspulat Taymaz B; Eskizeybek V; Kamiş H; Avci A Turk J Chem; 2023; 47(2):399-408. PubMed ID: 37528934 [TBL] [Abstract][Full Text] [Related]
44. Effect of Metallic Au Seed Layer Annealing on the Properties of Electrodeposited ZnO Nanorods. Park Y; Nam G; Kim B; Leem JY J Nanosci Nanotechnol; 2015 Nov; 15(11):8553-6. PubMed ID: 26726551 [TBL] [Abstract][Full Text] [Related]
45. Growth of vertically aligned ZnO nanorods using textured ZnO films. Solís-Pomar F; Martínez E; Meléndrez MF; Pérez-Tijerina E Nanoscale Res Lett; 2011 Sep; 6(1):524. PubMed ID: 21899743 [TBL] [Abstract][Full Text] [Related]
46. Density-controlled electrodeposition growth of zinc oxide nanorod arrays. Qiu J; Guo M; Zhang M; Wang X J Nanosci Nanotechnol; 2011 Jun; 11(6):4957-67. PubMed ID: 21770128 [TBL] [Abstract][Full Text] [Related]
48. Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D) Reduced Graphene Oxide(RGO)/Ni Foam. Wang Q; Cai C; Wang M; Guo Q; Wang B; Luo W; Wang Y; Zhang C; Zhou L; Zhang D; Tong Z; Liu Y; Chen J Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29899278 [TBL] [Abstract][Full Text] [Related]
49. Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism. Mahana A; Mehta SK Environ Sci Pollut Res Int; 2021 Jun; 28(22):28234-28250. PubMed ID: 33533000 [TBL] [Abstract][Full Text] [Related]
50. Photoelectrocatalytic Degradation of Methylene Blue Using ZnO Nanorods Fabricated on Silicon Substrates. Rosa APPD; Cavalcante RP; Silva TFD; Gozzi F; Byrne C; McGlynn E; Casagrande GA; Oliveira SC; Junior AM J Nanosci Nanotechnol; 2020 Feb; 20(2):1177-1188. PubMed ID: 31383118 [TBL] [Abstract][Full Text] [Related]
51. Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study. Pimpliskar PV; Motekar SC; Umarji GG; Lee W; Arbuj SS Photochem Photobiol Sci; 2019 Jun; 18(6):1503-1511. PubMed ID: 30972400 [TBL] [Abstract][Full Text] [Related]
52. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods. Al-Sabahi J; Bora T; Al-Abri M; Dutta J PLoS One; 2017; 12(12):e0189276. PubMed ID: 29261711 [TBL] [Abstract][Full Text] [Related]
53. Nanotip fabrication of zinc oxide nanorods and their enhanced field emission properties. Yao IC; Lin P; Tseng TY Nanotechnology; 2009 Mar; 20(12):125202. PubMed ID: 19420460 [TBL] [Abstract][Full Text] [Related]
54. ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Li B; Liu T; Wang Y; Wang Z J Colloid Interface Sci; 2012 Jul; 377(1):114-21. PubMed ID: 22498370 [TBL] [Abstract][Full Text] [Related]
55. Visible-light-responsive TiO2-coated ZnO:I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. Wang Y; Zheng YZ; Lu S; Tao X; Che Y; Chen JF ACS Appl Mater Interfaces; 2015 Mar; 7(11):6093-101. PubMed ID: 25742121 [TBL] [Abstract][Full Text] [Related]
56. Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers. Mosalagae K; Murape DM; Lepodise LM Heliyon; 2020 Jul; 6(7):e04458. PubMed ID: 32715133 [TBL] [Abstract][Full Text] [Related]
57. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ahmad M; Ahmed E; Hong ZL; Ahmed W; Elhissi A; Khalid NR Ultrason Sonochem; 2014 Mar; 21(2):761-73. PubMed ID: 24055646 [TBL] [Abstract][Full Text] [Related]
58. Plasmonic photocatalytic activity of ZnO:Au nanostructures: Tailoring the plasmon absorption and interfacial charge transfer mechanism. Raji R; Gopchandran KG J Hazard Mater; 2019 Apr; 368():345-357. PubMed ID: 30685723 [TBL] [Abstract][Full Text] [Related]
59. Two-Step Visible Light Photocatalytic Dye Degradation Phenomena in Ag Sahu P; Das D Langmuir; 2022 Apr; 38(15):4503-4520. PubMed ID: 35390257 [TBL] [Abstract][Full Text] [Related]
60. Application of cadmium-doped ZnO for the solar photocatalytic degradation of phenol. Shahmoradi B; Farahani F; Kohzadi S; Maleki A; Pordel M; Zandsalimi Y; Gong Y; Yang J; McKay G; Lee SM; Yang JK Water Sci Technol; 2019 Jan; 79(2):375-385. PubMed ID: 30865609 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]