These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35424443)

  • 1. Studies on the substrate-dependent photocatalytic properties of Cu
    Khasanah RAN; Lin HC; Ho HY; Peng YP; Lim TS; Hsiao HL; Wang CR; Chuang MC; Chien FS
    RSC Adv; 2021 Jan; 11(9):4935-4941. PubMed ID: 35424443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation.
    Li J; Lv S; Liu Y; Bai J; Zhou B; Hu X
    J Hazard Mater; 2013 Nov; 262():482-8. PubMed ID: 24076571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creation of Cu2O@TiO2 composite photocatalysts with p-n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light.
    Liu L; Yang W; Sun W; Li Q; Shang JK
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1465-76. PubMed ID: 25546838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Situ-Reduced Synthesis of Ti³⁺ Self-Doped TiO₂/g-C₃N₄ Heterojunctions with High Photocatalytic Performance under LED Light Irradiation.
    Li K; Gao S; Wang Q; Xu H; Wang Z; Huang B; Dai Y; Lu J
    ACS Appl Mater Interfaces; 2015 May; 7(17):9023-30. PubMed ID: 25867955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Cu2O Octadecahedron/TiO2 Quantum Dot Heterojunctions with High Visible Light Photocatalytic Activity and High Stability.
    Xu X; Gao Z; Cui Z; Liang Y; Li Z; Zhu S; Yang X; Ma J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):91-101. PubMed ID: 26651845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu
    Naresh G; Hsieh PL; Meena V; Lee SK; Chiu YH; Madasu M; Lee AT; Tsai HY; Lai TH; Hsu YJ; Lo YC; Huang MH
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3582-3589. PubMed ID: 30592409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defective Indium Tin Oxide Forms an Ohmic Back Contact to an n-Type Cu
    Chen YC; Dong PH; Hsu YK
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38375-38383. PubMed ID: 34357762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning alternate TiO
    Zhu H; Zhen C; Chen X; Feng S; Li B; Du Y; Liu G; Cheng HM
    Sci Bull (Beijing); 2022 Dec; 67(23):2420-2427. PubMed ID: 36566065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu
    Ding Q; Chen S; Shang F; Liang J; Liu C
    Nanotechnology; 2016 Dec; 27(48):485705. PubMed ID: 27796277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic Effect of Ti
    Li K; Huang Z; Zeng X; Huang B; Gao S; Lu J
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11577-11586. PubMed ID: 28266841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.
    Li J; Li J; Chen Q; Bai J; Zhou B
    J Hazard Mater; 2013 Nov; 262():304-10. PubMed ID: 24051045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of a Cu
    Zeng X; Gao Q; Song P; Zhang X; Xie J; Dong Q; Qi J; Xing XS; Du J
    RSC Adv; 2024 Jan; 14(7):4568-4574. PubMed ID: 38312728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting.
    Luo J; Steier L; Son MK; Schreier M; Mayer MT; Grätzel M
    Nano Lett; 2016 Mar; 16(3):1848-57. PubMed ID: 26866762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of FTO-Cu
    Koiki BA; Orimolade BO; Zwane BN; Nkwachukwu OV; Muzenda C; Nkosi D; Arotiba OA
    Chemosphere; 2021 Mar; 266():129231. PubMed ID: 33307414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Photoelectric Properties of Pr-Doped p-Cu
    Wei Y; Ji Q; Wang K; Zhang J; Niu J; Yu X
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of morphology on the photoelectrochemical performance of nanostructured Cu
    Shoute LCT; Alam KM; Vahidzadeh E; Manuel AP; Zeng S; Kumar P; Kar P; Shankar K
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 32619996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Facile Method for Preparation of Cu
    Liao Y; Deng P; Wang X; Zhang D; Li F; Yang Q; Zhang H; Zhong Z
    Nanoscale Res Lett; 2018 Jul; 13(1):221. PubMed ID: 30043194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ chemical vapor deposition to fabricate Cuprous oxide/copper sulfide core-shell flowers with boosted and stable wide-spectral region photocatalytic performance.
    Fu Y; Li Q; Liu J; Jiao Y; Hu S; Wang H; Xu S; Jiang B
    J Colloid Interface Sci; 2020 Jun; 570():143-152. PubMed ID: 32146241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional Restructuring of Cu
    Rubino A; Zanoni R; Schiavi PG; Latini A; Pagnanelli F
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47932-47944. PubMed ID: 34606231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Engineering of Cu
    Heo J; Bae H; Mane P; Burungale V; Seong C; Ha JS
    ACS Omega; 2023 Sep; 8(36):32794-32803. PubMed ID: 37720750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.