These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35424961)

  • 1. Styrene-based polymerised high internal phase emulsions using monomers in the internal phase as co-surfactants for improved liquid chromatography.
    Desire CT; Arrua RD; Mansour FR; Bon SAF; Hilder EF
    RSC Adv; 2022 Mar; 12(16):9773-9785. PubMed ID: 35424961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of shearing stress on the radial heterogeneity and chromatographic performance of styrene-based polymerised high internal phase emulsions prepared in capillary format.
    Desire CT; Arrua RD; Mansour FR; Bon SAF; Hilder EF
    RSC Adv; 2019 Mar; 9(13):7301-7313. PubMed ID: 35519965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins.
    Li Y; Tolley HD; Lee ML
    J Chromatogr A; 2010 Jul; 1217(30):4934-45. PubMed ID: 20576269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High efficiency polyethylene glycol diacrylate monoliths for reversed-phase capillary liquid chromatography of small molecules.
    Aggarwal P; Lawson JS; Tolley HD; Lee ML
    J Chromatogr A; 2014 Oct; 1364():96-106. PubMed ID: 25193173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of polymeric monoliths by copolymerization of acrylate monomers with amine functionalities for anion-exchange capillary liquid chromatography of proteins.
    Li Y; Gu B; Tolley HD; Lee ML
    J Chromatogr A; 2009 Jul; 1216(29):5525-32. PubMed ID: 19524247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking.
    Maya F; Svec F
    J Chromatogr A; 2013 Nov; 1317():32-8. PubMed ID: 23910448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of poly(methyl styrene-co-bis(p-vinylbenzyl)dimethylsilane)-based capillary monoliths for separation of low, medium, and high molecular-weight analytes.
    Lubbad SH
    J Chromatogr A; 2016 Apr; 1443():126-35. PubMed ID: 27016117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ethoxylated sorbitan ester surfactants on the chromatographic efficiency of poly(ethylene glycol)-based monoliths.
    Mansour FR; Desire CT; Hilder EF; Arrua RD
    J Chromatogr A; 2021 Sep; 1654():462464. PubMed ID: 34438302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of high internal phase emulsion polymeric monoliths for highly efficient enrichment of trace polycyclic aromatic hydrocarbons from large-volume water samples.
    Su R; Ruan G; Nie H; Xie T; Zheng Y; Du F; Li J
    J Chromatogr A; 2015 Jul; 1405():23-31. PubMed ID: 26077972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-ionic Surface Active Agents as Additives toward a Universal Porogen System for Porous Polymer Monoliths.
    Mansour FR; Arrua RD; Desire CT; Hilder EF
    Anal Chem; 2021 Feb; 93(5):2802-2810. PubMed ID: 33496173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-micro reversed-phase liquid chromatography for the separation of alkyl benzenes and proteins exploiting methacrylate- and polystyrene-based monolithic columns.
    Masini JC
    J Sep Sci; 2016 May; 39(9):1648-55. PubMed ID: 26960001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ethylene glycol) diacrylate based monolithic capillary columns for the analysis of polar small solutes by capillary electrochromatography.
    Vergara-Barberán M; Mompó-Roselló Ó; Herrero-Martínez JM; Simó-Alfonso EF
    J Sep Sci; 2018 Jun; 41(12):2632-2639. PubMed ID: 29603908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.
    Yang S; Ye F; Lv Q; Zhang C; Shen S; Zhao S
    J Chromatogr A; 2014 Sep; 1360():143-9. PubMed ID: 25145567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photografted fluoropolymers as novel chromatographic supports for polymeric monolithic stationary phases.
    Catalá-Icardo M; Torres-Cartas S; Meseguer-Lloret S; Simó-Alfonso EF; Herrero-Martínez JM
    Talanta; 2018 Sep; 187():216-222. PubMed ID: 29853038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric cation-exchange monolithic columns containing phosphoric acid functional groups for capillary liquid chromatography of peptides and proteins.
    Chen X; Tolley HD; Lee ML
    J Chromatogr A; 2010 Jun; 1217(24):3844-54. PubMed ID: 20447640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot preparation of a novel monolith for high performance liquid chromatography applications.
    Jiao X; Shen S; Shi T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Dec; 1007():100-9. PubMed ID: 26590881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of monoliths from single crosslinking monomers for reversed-phase capillary chromatography of small molecules.
    Li Y; Tolley HD; Lee ML
    J Chromatogr A; 2011 Mar; 1218(10):1399-408. PubMed ID: 21295783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of chromatographic performance with morphological features of organic polymer monoliths.
    Aggarwal P; Asthana V; Lawson JS; Tolley HD; Wheeler DR; Mazzeo BA; Lee ML
    J Chromatogr A; 2014 Mar; 1334():20-9. PubMed ID: 24569008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.
    Ramli RA; Hashim S; Laftah WA
    J Colloid Interface Sci; 2013 Feb; 391():86-94. PubMed ID: 23123033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.