These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35425055)

  • 1. Revealing the structural and chemical properties of copper-based nanoparticles released from copper treated wood.
    Wang C; Qi C
    RSC Adv; 2022 Apr; 12(18):11391-11401. PubMed ID: 35425055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion.
    Civardi C; Schlagenhauf L; Kaiser JP; Hirsch C; Mucchino C; Wichser A; Wick P; Schwarze FW
    J Nanobiotechnology; 2016 Nov; 14(1):77. PubMed ID: 27894312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles.
    Civardi C; Schwarze FW; Wick P
    Environ Pollut; 2015 May; 200():126-32. PubMed ID: 25705855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical chemical properties and cell toxicity of sanding copper-treated lumber.
    Sisler JD; Qi C; McKinney W; Shaffer J; Andrew M; Lee T; Thomas T; Castranova V; Mercer RR; Qian Y
    J Occup Environ Hyg; 2018 Apr; 15(4):311-321. PubMed ID: 29300681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle.
    Pantano D; Neubauer N; Navratilova J; Scifo L; Civardi C; Stone V; von der Kammer F; Müller P; Sobrido MS; Angeletti B; Rose J; Wohlleben W
    Environ Sci Technol; 2018 Feb; 52(3):1128-1138. PubMed ID: 29373787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.
    Civardi C; Schubert M; Fey A; Wick P; Schwarze FW
    PLoS One; 2015; 10(11):e0142578. PubMed ID: 26554706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating dermal transfer of copper particles from the surfaces of pressure-treated lumber and implications for exposure.
    Platten WE; Sylvest N; Warren C; Arambewela M; Harmon S; Bradham K; Rogers K; Thomas T; Luxton TP
    Sci Total Environ; 2016 Apr; 548-549():441-449. PubMed ID: 26826852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.
    Civardi C; Van den Bulcke J; Schubert M; Michel E; Butron MI; Boone MN; Dierick M; Van Acker J; Wick P; Schwarze FW
    PLoS One; 2016; 11(9):e0163124. PubMed ID: 27649315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of paint dust aerosol generated from mechanical abrasion of TiO
    Nored AW; Chalbot MG; Kavouras IG
    J Occup Environ Hyg; 2018 Sep; 15(9):629-640. PubMed ID: 29856686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative human health risk assessment along the lifecycle of nano-scale copper-based wood preservatives.
    Hristozov D; Pizzol L; Basei G; Zabeo A; Mackevica A; Hansen SF; Gosens I; Cassee FR; de Jong W; Koivisto AJ; Neubauer N; Sanchez Jimenez A; Semenzin E; Subramanian V; Fransman W; Jensen KA; Wohlleben W; Stone V; Marcomini A
    Nanotoxicology; 2018 Sep; 12(7):747-765. PubMed ID: 29893192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubilisation and chemical fixation of copper(II) in micronized copper treated wood.
    Xue W; Ruddick JN; Kennepohl P
    Dalton Trans; 2016 Mar; 45(9):3679-86. PubMed ID: 26819092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood.
    Griggs JL; Rogers KR; Nelson C; Luxton T; Platten WE; Bradham KD
    Sci Total Environ; 2017 Nov; 598():413-420. PubMed ID: 28448933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper release and transformation following natural weathering of nano-enabled pressure-treated lumber.
    Lankone RS; Challis K; Pourzahedi L; Durkin DP; Bi Y; Wang Y; Garland MA; Brown F; Hristovski K; Tanguay RL; Westerhoff P; Lowry G; Gilbertson LM; Ranville J; Fairbrother DH
    Sci Total Environ; 2019 Jun; 668():234-244. PubMed ID: 30852200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles.
    Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE
    J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.
    Chou S; Colman J; Tylenda C; De Rosa C
    Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters I: Concentrations and rates.
    Parks AN; Cantwell MG; Katz DR; Cashman MA; Luxton TP; Ho KT; Burgess RM
    Environ Toxicol Chem; 2018 Jul; 37(7):1956-1968. PubMed ID: 29575152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation states of copper in preservative treated wood as studied by X-ray absorption near edge spectroscopy (XANES).
    Zelinka SL; Kirker GT; Sterbinsky GE; Bourne KJ
    PLoS One; 2022; 17(1):e0263073. PubMed ID: 35085335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Characterization of Pure Copper Nanostructures Using Wood Inherent Architecture as a Natural Template.
    Dong Y; Wang K; Tan Y; Wang Q; Li J; Mark H; Zhang S
    Nanoscale Res Lett; 2018 Apr; 13(1):119. PubMed ID: 29693208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the risks of nano-enabled products through the life cycle: The case of nano copper oxide paint for wood protection and nano-pigments used in the automotive industry.
    Semenzin E; Subramanian V; Pizzol L; Zabeo A; Fransman W; Oksel C; Hristozov D; Marcomini A
    Environ Int; 2019 Oct; 131():104901. PubMed ID: 31279910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Copper Resistance Strategies of
    Pandharikar G; Claudien K; Rose C; Billet D; Pollier B; Deveau A; Besserer A; Morel-Rouhier M
    J Fungi (Basel); 2022 Jul; 8(7):. PubMed ID: 35887462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.