These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35425133)

  • 21. Preparation and characterization of doped hollow carbon spherical nanostructures with nickel and cobalt metals and their catalysis for the green synthesis of pyridopyrimidines.
    Taheri M; Naeimi H; Ghasemi AH
    RSC Adv; 2023 Jan; 13(6):3623-3634. PubMed ID: 36756581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.
    Panagiotopoulou P; Martin N; Vlachos DG
    ChemSusChem; 2015 Jun; 8(12):2046-54. PubMed ID: 26013846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Turkish perlite supported nickel oxide as the heterogeneous acid catalyst for a series of Claisen-Schmidt condensation reactions.
    Malpani SK; Goyal D; Katara S; Rani A
    Turk J Chem; 2021; 45(4):1097-1114. PubMed ID: 34707436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silica nanosphere-supported palladium(II) furfural complex as a highly efficient and recyclable catalyst for oxidative amination of aldehydes.
    Sharma RK; Sharma S
    Dalton Trans; 2014 Jan; 43(3):1292-304. PubMed ID: 24193811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis, Characterization, and Catalytic Properties of Magnetic Fe
    Banazadeh M; Amirnejat S; Javanshir S
    Front Chem; 2020; 8():596029. PubMed ID: 33335887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation, characterization and application of nanosized CuO/HZSM-5 as an efficient and heterogeneous catalyst for the N-formylation of amines at room temperature.
    Tajbakhsh M; Alinezhad H; Nasrollahzadeh M; Kamali TA
    J Colloid Interface Sci; 2016 Jun; 471():37-47. PubMed ID: 26971067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tungsten-substituted molybdophosphoric acid impregnated with kaolin: effective catalysts for the synthesis of 3,4-dihydropyrimidin-2(1
    Aher DS; Khillare KR; Chavan LD; Shankarwar SG
    RSC Adv; 2021 Jan; 11(5):2783-2792. PubMed ID: 35424238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles.
    Saikumari N; Dev SM; Dev SA
    Sci Rep; 2021 Jan; 11(1):1734. PubMed ID: 33462273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal particle growth during glucose hydrogenation over Ru/SiO2 evaluated by X-ray absorption spectroscopy and electron microscopy.
    Maris EP; Ketchie WC; Oleshko V; Davis RJ
    J Phys Chem B; 2006 Apr; 110(15):7869-76. PubMed ID: 16610884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wet air oxidation of cresylic spent caustic - A model compound study over graphene oxide (GO) and ruthenium/GO catalysts.
    Barge AS; Vaidya PD
    J Environ Manage; 2018 Apr; 212():479-489. PubMed ID: 29459340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microwave-assisted biodiesel production using bio-waste catalyst and process optimization using response surface methodology and kinetic study.
    Devasan R; Ruatpuia JVL; Gouda SP; Kodgire P; Basumatary S; Halder G; Rokhum SL
    Sci Rep; 2023 Feb; 13(1):2570. PubMed ID: 36782046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amphiphilic polyoxometalate-paired polymer coated Fe₃O₄: magnetically recyclable catalyst for epoxidation of bio-derived olefins with H₂O₂.
    Leng Y; Zhao J; Jiang P; Wang J
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5947-54. PubMed ID: 24694114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amine-rich quartz nanoparticles for Cu(II) chelation and their application as an efficient catalyst for oxidative degradation of Rhodamine B dye.
    Gemeay AH; El-Halwagy ME; Elsherbiny AS; Zaki AB
    Environ Sci Pollut Res Int; 2021 Jun; 28(22):28289-28306. PubMed ID: 33534102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tandem Photocatalysis Protocol for Hydrogen Generation/Olefin Hydrogenation Using Pd-g-C
    Jafarpour M; Feizpour F; Rezaeifard A; Pourmorteza N; Breit B
    Inorg Chem; 2021 Jul; 60(13):9484-9495. PubMed ID: 34133148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and Characterization of Ag/Al
    Chanerika R; Shozi ML; Friedrich HB
    ACS Omega; 2022 Feb; 7(5):4026-4040. PubMed ID: 35155897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Conversion of Levulinic Acid to Methyl Levulinate Over SO
    Mathivanan D; Mani D; Saranraj K; Archana S; Sengottaiyan C; Chang H
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3237-3248. PubMed ID: 34739779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source.
    Feng J; Gu X; Xue Y; Han Y; Lu X
    Sci Total Environ; 2018 Aug; 633():426-432. PubMed ID: 29579653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic γFe
    Norouzi F; Javanshir S
    BMC Chem; 2020 Dec; 14(1):1. PubMed ID: 31922150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst.
    Li Z; Liu Y; Liu C; Wu S; Wei W
    Bioresour Technol; 2019 Feb; 274():190-197. PubMed ID: 30504102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source.
    Jędrzejczyk M; Soszka E; Goscianska J; Kozanecki M; Grams J; Ruppert AM
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.