These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35425219)

  • 1. Ball pen writing-without-ink: a truly simple and accessible method for sensitivity enhancement in lateral flow assays.
    Li Z; Wu S; Ji J; Bai Y; Jia P; Gong Y; Feng S; Li F
    RSC Adv; 2022 Jan; 12(4):2068-2073. PubMed ID: 35425219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polydimethylsiloxane-Paper Hybrid Lateral Flow Assay for Highly Sensitive Point-of-Care Nucleic Acid Testing.
    Choi JR; Liu Z; Hu J; Tang R; Gong Y; Feng S; Ren H; Wen T; Yang H; Qu Z; Pingguan-Murphy B; Xu F
    Anal Chem; 2016 Jun; 88(12):6254-64. PubMed ID: 27012657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens.
    Younes N; Yassine HM; Kourentzi K; Tang P; Litvinov D; Willson RC; Abu-Raddad LJ; Nasrallah GK
    Crit Rev Food Sci Nutr; 2023 Jun; ():1-23. PubMed ID: 37350754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated, Universal, and Mass-Producible Paper-Based Lateral Flow Biosensing Platform for High-Performance Point-of-Care Testing.
    Han GR; Ki H; Kim MG
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1885-1894. PubMed ID: 31813220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of a nitrocellulose membrane with cellulose nanofibers for enhanced sensitivity of lateral flow assays: application to the determination of Staphylococcus aureus.
    Tang RH; Liu LN; Zhang SF; Li A; Li Z
    Mikrochim Acta; 2019 Nov; 186(12):831. PubMed ID: 31758272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved sensitivity of lateral flow assay using paper-based sample concentration technique.
    Tang R; Yang H; Choi JR; Gong Y; Hu J; Feng S; Pingguan-Murphy B; Mei Q; Xu F
    Talanta; 2016 May; 152():269-76. PubMed ID: 26992520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QDs-based fluorescent lateral flow assays for Point-of-care testing of insulin.
    Kaur J; Deng F; Morris MJ; Goldys E
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral and Vertical Flow Assays for Point-of-Care Diagnostics.
    Jiang N; Ahmed R; Damayantharan M; Ünal B; Butt H; Yetisen AK
    Adv Healthc Mater; 2019 Jul; 8(14):e1900244. PubMed ID: 31081270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescent Molecules and Materials as Diagnostic Reporters in Lateral Flow Assays.
    Danthanarayana AN; Brgoch J; Willson RC
    ACS Appl Bio Mater; 2022 Jan; 5(1):82-96. PubMed ID: 35014811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Gold Nanoparticle Vertical Flow Assays for Point-of-Care Testing.
    Lei R; Wang D; Arain H; Mohan C
    Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis.
    Liu Y; Zhan L; Qin Z; Sackrison J; Bischof JC
    ACS Nano; 2021 Mar; 15(3):3593-3611. PubMed ID: 33607867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing.
    Gong Y; Zheng Y; Jin B; You M; Wang J; Li X; Lin M; Xu F; Li F
    Talanta; 2019 Aug; 201():126-133. PubMed ID: 31122402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor.
    Li Z; Li F; Xing Y; Liu Z; You M; Li Y; Wen T; Qu Z; Ling Li X; Xu F
    Biosens Bioelectron; 2017 Dec; 98():478-485. PubMed ID: 28728008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of writing age of blue ballpoint pen inks by high performance liquid chromatography].
    Shi XF; Li XQ; Xu YJ; Wang JH; Wang YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Sep; 26(9):1765-8. PubMed ID: 17112066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay.
    Nguyen VT; Song S; Park S; Joo C
    Biosens Bioelectron; 2020 Mar; 152():112015. PubMed ID: 32056735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolvable sugar barriers to enhance the sensitivity of nitrocellulose membrane lateral flow assay for COVID-19 nucleic acid.
    Tang R; Alam N; Li M; Xie M; Ni Y
    Carbohydr Polym; 2021 Sep; 268():118259. PubMed ID: 34127229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials.
    Sena-Torralba A; Álvarez-Diduk R; Parolo C; Piper A; Merkoçi A
    Chem Rev; 2022 Sep; 122(18):14881-14910. PubMed ID: 36067039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple strategy for signal enhancement in lateral flow assays using superabsorbent polymers.
    You T; Jeong W; Lee H; Huh YS; Kim SM; Jeon TJ
    Mikrochim Acta; 2021 Oct; 188(11):364. PubMed ID: 34613450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays.
    Hu J; Wang L; Li F; Han YL; Lin M; Lu TJ; Xu F
    Lab Chip; 2013 Nov; 13(22):4352-7. PubMed ID: 24056409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral flow assay with near-infrared dye for multiplex detection.
    Swanson C; D'Andrea A
    Clin Chem; 2013 Apr; 59(4):641-8. PubMed ID: 23364182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.