These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35425431)
1. Developing the sensing features of copper electrodes as an environmental friendly detection tool for chemical oxygen demand. Elfeky EMS; Shehata MR; Elbashar YH; Barakat MH; El Rouby WMA RSC Adv; 2022 Jan; 12(7):4199-4208. PubMed ID: 35425431 [TBL] [Abstract][Full Text] [Related]
2. Nano-Cu Modified Cu and Nano-Cu Modified Graphite Electrodes for Chemical Oxygen Demand Sensors. Diksy Y; Rahmawati I; Jiwanti PK; Ivandini TA Anal Sci; 2020 Nov; 36(11):1323-1327. PubMed ID: 32536621 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical tuning of the activity and structure of a copper-cobalt micro-nano film on a gold electrode, and its application to the determination of glucose and of Chemical Oxygen Demand. Wang J; Yao N; Li M; Hu J; Chen J; Hao Q; Wu K; Zhou Y Mikrochim Acta; 2015; 182(3):515-522. PubMed ID: 25620812 [TBL] [Abstract][Full Text] [Related]
4. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine. Amiripour F; Azizi SN; Ghasemi S Biosens Bioelectron; 2018 Jun; 107():111-117. PubMed ID: 29454300 [TBL] [Abstract][Full Text] [Related]
5. A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement. Huang X; Zhu Y; Yang W; Jiang A; Jin X; Zhang Y; Yan L; Zhang G; Liu Z Molecules; 2019 Aug; 24(17):. PubMed ID: 31466335 [TBL] [Abstract][Full Text] [Related]
6. Development of a robust method for Cd(II) ions analysis using CeO Haider S; Zaib M; Farooq U; Salman M; Bajwa RA; Shahida S; Aslam M Environ Monit Assess; 2024 Apr; 196(5):435. PubMed ID: 38587761 [TBL] [Abstract][Full Text] [Related]
7. A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand. Carchi T; Lapo B; Alvarado J; Espinoza-Montero PJ; Llorca J; Fernández L Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736381 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical sensing of copper (II) ion in water using bi-metal oxide framework modified glassy carbon electrode. Theerthagiri S; Rajkannu P; Senthil Kumar P; Peethambaram P; Ayyavu C; Rasu R; Kannaiyan D Food Chem Toxicol; 2022 Sep; 167():113313. PubMed ID: 35872257 [TBL] [Abstract][Full Text] [Related]
9. Electro-oxidation and determination 5-hydroxymethylfurfural in food on co-electrodeposited Cu-Ni bimetallic microparticles modified copper electrode. Ye Y; Zhang H; Kahaljan G; Wang M; Mohet A; He S; Cao X; Zheng H Food Chem; 2022 Jan; 367():130659. PubMed ID: 34343800 [TBL] [Abstract][Full Text] [Related]
10. Sensitive and selective electrochemical detection of bisphenol A based on SBA-15 like Cu-PMO modified glassy carbon electrode. Eftekhari A; Dalili M; Karimi Z; Rouhani S; Hasanzadeh A; Rostamnia S; Khaksar S; Idris AO; Karimi-Maleh H; Yola ML; Msagati TAM Food Chem; 2021 Oct; 358():129763. PubMed ID: 34000688 [TBL] [Abstract][Full Text] [Related]
11. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor. Heydari H; Gholivand MB; Abdolmaleki A Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():16-24. PubMed ID: 27207034 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical investigation of an anticancer drug 5-Fluorouracil in the presence of Theophylline using low-cost and disposable poly(GLY) modified pencil graphite electrode. Pradeepa E; Arthoba Nayaka Y; Sahana HR Anal Biochem; 2024 Apr; 687():115451. PubMed ID: 38154624 [TBL] [Abstract][Full Text] [Related]
13. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode. Yu H; Ma C; Quan X; Chen S; Zhao H Environ Sci Technol; 2009 Mar; 43(6):1935-9. PubMed ID: 19368195 [TBL] [Abstract][Full Text] [Related]
15. A facile fabrication of copper particle-decorated novel graphene flower composites for enhanced detecting of nitrite. Wang H; Wang C; Yang B; Zhai C; Bin D; Zhang K; Yang P; Du Y Analyst; 2015 Feb; 140(4):1291-7. PubMed ID: 25568897 [TBL] [Abstract][Full Text] [Related]
16. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach. Svegl IG; Bele M; Ogorevc B Anal Chim Acta; 2008 Nov; 628(2):173-80. PubMed ID: 18929005 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case. Niu X; Li Y; Tang J; Hu Y; Zhao H; Lan M Biosens Bioelectron; 2014 Jan; 51():22-8. PubMed ID: 23920092 [TBL] [Abstract][Full Text] [Related]
18. Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dot-modified electrode. Pudza MY; Abidin ZZ; Abdul-Rashid S; Yasin FM; Noor ASM; Abdullah J Environ Sci Pollut Res Int; 2020 Apr; 27(12):13315-13324. PubMed ID: 32020456 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional porous Cu@Cu Gao Y; Yang F; Yu Q; Fan R; Yang M; Rao S; Lan Q; Yang Z; Yang Z Mikrochim Acta; 2019 Feb; 186(3):192. PubMed ID: 30778676 [TBL] [Abstract][Full Text] [Related]
20. Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macroelectrodes modified via a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. Chelaghmia ML; Fisli H; Nacef M; Brownson DAC; Affoune AM; Satha H; Banks CE Anal Methods; 2021 Jul; 13(25):2812-2822. PubMed ID: 34059854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]