These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35425535)

  • 1. Metal-support interaction induced ZnO overlayer in Cu@ZnO/Al
    Li Z; Li N; Wang N; Zhou B; Yu J; Song B; Yin P; Yang Y
    RSC Adv; 2022 Feb; 12(9):5509-5516. PubMed ID: 35425535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Evolution of Cu/ZnO Catalysts during Water-Gas Shift Reaction: An
    Dong Z; Liu W; Zhang L; Wang S; Luo L
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41707-41714. PubMed ID: 34427430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CeO
    Li Z; Wang M; Jia Y; Du R; Li T; Zheng Y; Chen M; Qiu Y; Yan K; Zhao WW; Wang P; Waterhouse GIN; Dai S; Zhao Y; Chen G
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31584-31594. PubMed ID: 37339248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction.
    Zhao J; Bai Y; Li Z; Liu J; Wang W; Wang P; Yang B; Shi R; Waterhouse GIN; Wen XD; Dai Q; Zhang T
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202219299. PubMed ID: 36734471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addition of Sodium Additives for Improved Performance of Water-Gas Shift Reaction over Ni-Based Catalysts.
    Li N; Li Z; Wang N; Yu J; Yang Y
    ACS Omega; 2021 Jan; 6(3):2346-2353. PubMed ID: 33521473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The active sites of Cu-ZnO catalysts for water gas shift and CO hydrogenation reactions.
    Zhang Z; Chen X; Kang J; Yu Z; Tian J; Gong Z; Jia A; You R; Qian K; He S; Teng B; Cui Y; Wang Y; Zhang W; Huang W
    Nat Commun; 2021 Jul; 12(1):4331. PubMed ID: 34267215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbide-Supported Au Catalysts for Water-Gas Shift Reactions: A New Territory for the Strong Metal-Support Interaction Effect.
    Dong J; Fu Q; Jiang Z; Mei B; Bao X
    J Am Chem Soc; 2018 Oct; 140(42):13808-13816. PubMed ID: 30281304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-temperature water-gas shift reaction catalyzed by hybrid NiO@NiCr-layered double hydroxides: catalytic property, kinetics and mechanism investigation.
    Xia S; Dai T; Meng Y; Zhou X; Pan G; Zhang X; Ni Z
    Phys Chem Chem Phys; 2020 Jun; 22(22):12630-12643. PubMed ID: 32458842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation.
    Smith PJ; Kondrat SA; Chater PA; Yeo BR; Shaw GM; Lu L; Bartley JK; Taylor SH; Spencer MS; Kiely CJ; Kelly GJ; Park CW; Hutchings GJ
    Chem Sci; 2017 Mar; 8(3):2436-2447. PubMed ID: 28451351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative-Atmosphere-Induced Strong Metal-Support Interaction and Its Catalytic Application.
    Wu G; Liu Y; Wang J
    Acc Chem Res; 2023 Apr; 56(8):911-923. PubMed ID: 37010390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO
    Wang L; Etim UJ; Zhang C; Amirav L; Zhong Z
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohol-Induced Strong Metal-Support Interactions in a Supported Copper/ZnO Catalyst.
    Jin S; Zhang Z; Li D; Wang Y; Lian C; Zhu M
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202301563. PubMed ID: 36920707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2 O3 catalysts induced by strong metal-support interactions.
    Lunkenbein T; Schumann J; Behrens M; Schlögl R; Willinger MG
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4544-8. PubMed ID: 25683230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Methanol Synthesis over Self-Limited ZnO
    Song T; Li R; Wang J; Dong C; Feng X; Ning Y; Mu R; Fu Q
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202316888. PubMed ID: 38078622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of water-gas shift reaction on ZnO [Formula: see text] surface and 6Cu cluster deposited over ZnO [Formula: see text] surface using density functional theory studies.
    Cong VT; Van Son N; Diem DQ; Pham SQT
    J Mol Model; 2022 Mar; 28(4):84. PubMed ID: 35249155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame Synthesis of Cu/ZnO-CeO
    Zhu J; Ciolca D; Liu L; Parastaev A; Kosinov N; Hensen EJM
    ACS Catal; 2021 Apr; 11(8):4880-4892. PubMed ID: 33898079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in Deterioration Behaviors of Cu/ZnO/Al
    Kamsuwan T; Guntida A; Praserthdam P; Jongsomjit B
    ACS Omega; 2022 Jul; 7(29):25783-25797. PubMed ID: 35910179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogenation of CO
    Palomino RM; Ramírez PJ; Liu Z; Hamlyn R; Waluyo I; Mahapatra M; Orozco I; Hunt A; Simonovis JP; Senanayake SD; Rodriguez JA
    J Phys Chem B; 2018 Jan; 122(2):794-800. PubMed ID: 28825484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.