These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35425813)

  • 1. Still Not Solved: A Call for Renewed Focus on User-Centered Teleoperation Interfaces.
    Rea DJ; Seo SH
    Front Robot AI; 2022; 9():704225. PubMed ID: 35425813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-Level Authoring for Remote Robot Teleoperation.
    Senft E; Hagenow M; Welsh K; Radwin R; Zinn M; Gleicher M; Mutlu B
    Front Robot AI; 2021; 8():707149. PubMed ID: 34646866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building a Relationship between Robot Characteristics and Teleoperation User Interfaces.
    Mortimer M; Horan B; Seyedmahmoudian M
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teleoperator-Robot-Human Interaction in Manufacturing: Perspectives from Industry, Robot Manufacturers, and Researchers.
    Kim S; Hernandez I; Nussbaum MA; Lim S
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):28-40. PubMed ID: 38328969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building Human Visual Attention Map for Construction Equipment Teleoperation.
    Fan J; Li X; Su X
    Front Neurosci; 2022; 16():895126. PubMed ID: 35757532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Teleoperation and Visualization Interfaces for Remote Intervention in Space.
    Kazanzides P; Vagvolgyi BP; Pryor W; Deguet A; Leonard S; Whitcomb LL
    Front Robot AI; 2021; 8():747917. PubMed ID: 34926590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot.
    Škulj G; Vrabič R; Podržaj P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of 3-D robot teleoperation interfaces with novice users.
    Labonte D; Boissy P; Michaud F
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1331-42. PubMed ID: 20106745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elicitation of trustworthiness requirements for highly dexterous teleoperation systems with signal latency.
    Louca J; Vrublevskis J; Eder K; Tzemanaki A
    Front Neurorobot; 2023; 17():1187264. PubMed ID: 37680349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of three different techniques for camera and motion control of a teleoperated robot.
    Doisy G; Ronen A; Edan Y
    Appl Ergon; 2017 Jan; 58():527-534. PubMed ID: 27181096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on Teleoperated Virtual Reality Human-Robot Five-Dimensional Collaboration System.
    Zhang Q; Liu Q; Duan J; Qin J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Teleoperation of Collaborative Robot for Remote Dementia Care in Home Environments.
    Lv H; Yang G; Zhou H; Huang X; Yang H; Pang Z
    IEEE J Transl Eng Health Med; 2020; 8():1400510. PubMed ID: 32617197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study of personalized speed adaptation method based on mental state for teleoperated robots.
    Zhang T; Zhang X; Lu Z; Zhang Y; Jiang Z; Zhang Y
    Front Neurosci; 2022; 16():976437. PubMed ID: 36117631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Control of a New Asymmetric Teleoperation Robot Based on a State Observer.
    Shi B; Wu H; Zhu Y; Shang M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral teleoperation with object-adaptive mapping.
    Gao X; Silvério J; Calinon S; Li M; Xiao X
    Complex Intell Systems; 2022; 8(4):2983-2990. PubMed ID: 35935807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation.
    Si W; Wang N; Li Q; Yang C
    Front Neurorobot; 2022; 16():840240. PubMed ID: 35250529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GuLiM: A Hybrid Motion Mapping Technique for Teleoperation of Medical Assistive Robot in Combating the COVID-19 Pandemic.
    Lv H; Kong D; Pang G; Wang B; Yu Z; Pang Z; Yang G
    IEEE Trans Med Robot Bionics; 2022 Feb; 4(1):106-117. PubMed ID: 35582700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible robotic teleoperation architecture for intelligent oil fields.
    Caiza G; Garcia CA; Naranjo JE; Garcia MV
    Heliyon; 2020 Apr; 6(4):e03833. PubMed ID: 32373738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory manipulation as a countermeasure to robot teleoperation delays: system and evidence.
    Du J; Vann W; Zhou T; Ye Y; Zhu Q
    Sci Rep; 2024 Feb; 14(1):4333. PubMed ID: 38383745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Hand Motion Capture by Using Biological Inspiration for Bionic Bimanual Robot Teleoperation.
    Gao Q; Deng Z; Ju Z; Zhang T
    Cyborg Bionic Syst; 2023; 4():0052. PubMed ID: 37711160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.