These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35425814)

  • 1. Design and Prototyping of an Underactuated Hand Exoskeleton With Fingers Coupled by a Gear-Based Differential.
    Dragusanu M; Troisi D; Villani A; Prattichizzo D; Malvezzi M
    Front Robot AI; 2022; 9():862340. PubMed ID: 35425814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Newly-Designed Wearable Robotic Hand Exoskeleton Based on Surface Electromyographic Signals.
    Li K; Li Z; Zeng H; Wei N
    Front Neurorobot; 2021; 15():711047. PubMed ID: 34603003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a Self-Aligning Four-Finger Exoskeleton for Finger Abduction/Adduction and Flexion/Extension Motion.
    Ge R; Liu Y; Yan Z; Cheng Q; Qiu S; Ming D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a SMA-based soft composite structure for wearable rehabilitation gloves.
    Xie Q; Meng Q; Yu W; Wu Z; Xu R; Zeng Q; Zhou Z; Yang T; Yu H
    Front Neurorobot; 2023; 17():1047493. PubMed ID: 36845070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jointless structure and under-actuation mechanism for compact hand exoskeleton.
    In H; Cho KJ; Kim K; Lee B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975394. PubMed ID: 22275598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hand rehabilitation after stroke using a wearable, high DOF, spring powered exoskeleton.
    Tianyao Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():578-581. PubMed ID: 28324934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel hybrid securing actuator for a self-securing soft robotic hand exoskeleton.
    Hernandez-Barraza L; Fraiszudeen A; Yuan Lee DL; Chen-Hua Yeow R
    Front Robot AI; 2023; 10():1164819. PubMed ID: 37559571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Adaptive Mechatronic Exoskeleton for Force-Controlled Finger Rehabilitation.
    Dickmann T; Wilhelm NJ; Glowalla C; Haddadin S; van der Smagt P; Burgkart R
    Front Robot AI; 2021; 8():716451. PubMed ID: 34660703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.
    Yap HK; Lim JH; Nasrallah F; Yeow CH
    Front Neurosci; 2017; 11():547. PubMed ID: 29062267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on an Exoskeleton Hand Function Training Device].
    Hu X; Zhang Y; Li J; Yi J; Yu H; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):23-30. PubMed ID: 27382735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Validation of a Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation.
    Sun N; Li G; Cheng L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1513-1523. PubMed ID: 34270428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential.
    Chen T; Casas R; Lum PS
    IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation.
    Cempini M; De Rossi SM; Lenzi T; Cortese M; Giovacchini F; Vitiello N; Carrozza MC
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650414. PubMed ID: 24187233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Low-Cost EEG-Controlled Hand Exoskeleton 3D Printed on Textiles.
    Araujo RS; Silva CR; Netto SPN; Morya E; Brasil FL
    Front Neurosci; 2021; 15():661569. PubMed ID: 34248478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and fabrication of a three dimensional printable non-assembly articulated hand exoskeleton for rehabilitation.
    Lei Cui ; Phan A; Allison G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4627-30. PubMed ID: 26737325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.