These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35425902)

  • 1. Hollow Filaments Synthesized by Dry-Jet Wet Spinning of Cellulose Nanofibrils: Structural Properties and Thermoregulation with Phase-Change Infills.
    Reyes G; Ajdary R; Yazdani MR; Rojas OJ
    ACS Appl Polym Mater; 2022 Apr; 4(4):2908-2916. PubMed ID: 35425902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning.
    Lundahl MJ; Klar V; Ajdary R; Norberg N; Ago M; Cunha AG; Rojas OJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27287-27296. PubMed ID: 30014693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow Filaments from Coaxial Dry-Jet Wet Spinning of a Cellulose Solution in an Ionic Liquid: Wet-Strength and Water Interactions.
    Zhang S; Reyes G; Khakalo A; Rojas OJ
    Biomacromolecules; 2024 Jan; 25(1):282-289. PubMed ID: 38086070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels.
    Lundahl MJ; Cunha AG; Rojo E; Papageorgiou AC; Rautkari L; Arboleda JC; Rojas OJ
    Sci Rep; 2016 Jul; 6():30695. PubMed ID: 27465828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial Spinning of All-Cellulose Systems for Enhanced Toughness: Filaments of Oxidized Nanofibrils Sheathed in Cellulose II Regenerated from a Protic Ionic Liquid.
    Reyes G; Lundahl MJ; Alejandro-Martín S; Arteaga-Pérez LE; Oviedo C; King AWT; Rojas OJ
    Biomacromolecules; 2020 Feb; 21(2):878-891. PubMed ID: 31895545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage.
    Yazdani MR; Ajdary R; Kankkunen A; Rojas OJ; Seppälä A
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6188-6200. PubMed ID: 33522810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions.
    Mao H; Niu P; Zhang Z; Kong Y; Wang WJ; Yang X
    Carbohydr Polym; 2023 Aug; 313():120881. PubMed ID: 37182934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Acetylation of Plant Fibers into Micro- and Nanocelluloses for the Synthesis of Highly Stretchable, Tough, and Water-Resistant Co-continuous Filaments via Wet-Spinning.
    Tripathi A; Ago M; Khan SA; Rojas OJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44776-44786. PubMed ID: 30484313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties.
    Ghasemi S; Tajvidi M; Bousfield DW; Gardner DJ; Gramlich WM
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogels.
    Wang L; Ago M; Borghei M; Ishaq A; Papageorgiou AC; Lundahl M; Rojas OJ
    ACS Sustain Chem Eng; 2019 Mar; 7(6):6013-6022. PubMed ID: 30931178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wet-spun graphene filaments: effect of temperature of coagulation bath and type of reducing agents on mechanical & electrical properties.
    Oksuz M; Erbil HY
    RSC Adv; 2018 May; 8(31):17443-17452. PubMed ID: 35539226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocellulose-Based Hollow Fibers for Advanced Water and Moisture Management.
    Niu P; Mao H; Lim KH; Wang Q; Wang WJ; Yang X
    ACS Nano; 2023 Aug; 17(15):14686-14694. PubMed ID: 37459214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils.
    Vuoriluoto M; Orelma H; Lundahl M; Borghei M; Rojas OJ
    Biomacromolecules; 2017 Jun; 18(6):1803-1813. PubMed ID: 28436646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward continuous high-performance bacterial cellulose macrofibers by implementing grading-stretching in spinning.
    Zhao X; Chen S; Wu Z; Sheng N; Zhang M; Liang Q; Han Z; Wang H
    Carbohydr Polym; 2022 Apr; 282():119133. PubMed ID: 35123765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Polyelectrolyte Complex Spinning of Cellulose Nanofibrils for Advanced Bicomponent Fibers.
    Toivonen MS; Kurki-Suonio S; Wagermaier W; Hynninen V; Hietala S; Ikkala O
    Biomacromolecules; 2017 Apr; 18(4):1293-1301. PubMed ID: 28262019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanically strong all-chitin filaments: Wet-spinning of β-chitin nanofibers in aqueous NaOH.
    Chen C; Wu Q; Zao Y; Ma J; Wan Z; Li S; Li D; Jin Y
    Int J Biol Macromol; 2022 Dec; 222(Pt B):3243-3249. PubMed ID: 36252632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue.
    Hooshmand S; Aitomäki Y; Norberg N; Mathew AP; Oksman K
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13022-8. PubMed ID: 26017287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Acetylated Ioncell-F Fibers with Low Degree of Substitution.
    Asaadi S; Kakko T; King AWT; Kilpeläinen I; Hummel M; Sixta H
    ACS Sustain Chem Eng; 2018 Jul; 6(7):9418-9426. PubMed ID: 30271692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lightweight, strong, and form-stable cellulose nanofibrils phase change aerogel with high latent heat.
    Song M; Jiang J; Zhu J; Zheng Y; Yu Z; Ren X; Jiang F
    Carbohydr Polym; 2021 Nov; 272():118460. PubMed ID: 34420720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.