These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3542639)

  • 1. Neural cell adhesion molecule expression in Xenopus embryos.
    Balak K; Jacobson M; Sunshine J; Rutishauser U
    Dev Biol; 1987 Feb; 119(2):540-50. PubMed ID: 3542639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos.
    Jacobson M; Rutishauser U
    Dev Biol; 1986 Aug; 116(2):524-31. PubMed ID: 3525283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do the migratory and adhesive properties of the neural crest govern ganglia formation in the avian peripheral nervous system?
    Duband JL; Tucker GC; Poole TJ; Vincent M; Aoyama H; Thiery JP
    J Cell Biochem; 1985; 27(3):189-203. PubMed ID: 3886676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development.
    Sunshine J; Balak K; Rutishauser U; Jacobson M
    Proc Natl Acad Sci U S A; 1987 Aug; 84(16):5986-90. PubMed ID: 3475717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis.
    Levi G; Crossin KL; Edelman GM
    J Cell Biol; 1987 Nov; 105(5):2359-72. PubMed ID: 3680386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial appearance and regional distribution of the neuron-glia cell adhesion molecule in the chick embryo.
    Thiery JP; Delouvée A; Grumet M; Edelman GM
    J Cell Biol; 1985 Feb; 100(2):442-56. PubMed ID: 3881458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y; Whitaker LL; Ramsdell AF
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction.
    Mancilla A; Mayor R
    Dev Biol; 1996 Aug; 177(2):580-9. PubMed ID: 8806833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro.
    Keane RW; Mehta PP; Rose B; Honig LS; Loewenstein WR; Rutishauser U
    J Cell Biol; 1988 Apr; 106(4):1307-19. PubMed ID: 2834404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of cell adhesion molecule E-cadherin in Xenopus embryos begins at gastrulation and predominates in the ectoderm.
    Choi YS; Gumbiner B
    J Cell Biol; 1989 Jun; 108(6):2449-58. PubMed ID: 2472408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression pattern of a basic helix-loop-helix transcription factor Xhairy2b during Xenopus laevis development.
    Tsuji S; Cho KW; Hashimoto C
    Dev Genes Evol; 2003 Aug; 213(8):407-11. PubMed ID: 12774230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and expression of two interactive extracellular matrix proteins, cytotactin and cytotactin-binding proteoglycan, during development of Xenopus laevis. I. Embryonic development.
    Williamson DA; Parrish EP; Edelman GM
    J Morphol; 1991 Aug; 209(2):189-202. PubMed ID: 1720464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of integrins and their ligands in the trunk of Xenopus laevis during neural crest cell migration.
    Krotoski D; Bronner-Fraser M
    J Exp Zool; 1990 Feb; 253(2):139-50. PubMed ID: 2179461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary structure and developmental expression of a large cytoplasmic domain form of Xenopus laevis neural cell adhesion molecule (NCAM).
    Krieg PA; Sakaguchi DS; Kintner CR
    Nucleic Acids Res; 1989 Dec; 17(24):10321-35. PubMed ID: 2481269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of neural inducing capacity in dissociated Xenopus embryos.
    Sato SM; Sargent TD
    Dev Biol; 1989 Jul; 134(1):263-6. PubMed ID: 2731653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of altered expression of the neural cell adhesion molecule, N-CAM, on early neural development in Xenopus embryos.
    Kintner C
    Neuron; 1988 Sep; 1(7):545-55. PubMed ID: 3078413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.
    Snir M; Ofir R; Elias S; Frank D
    EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus.
    Rangarajan J; Luo T; Sargent TD
    Dev Biol; 2006 Jul; 295(1):206-18. PubMed ID: 16674935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of Engrailed-1 and Wnt-1 expression in the developing central nervous system of Xenopus laevis.
    Eizema K; Koster JG; Stegeman BI; Baarends WM; Lanser PH; Destrée OH
    Int J Dev Biol; 1994 Dec; 38(4):623-32. PubMed ID: 7779684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.