These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35426498)

  • 1. Utility of radiomics features of diffusion-weighted magnetic resonance imaging for differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma: model development and external validation.
    Matsumoto S; Arita Y; Yoshida S; Fukushima H; Kimura K; Yamada I; Tanaka H; Yagi F; Yokoyama M; Matsuoka Y; Oya M; Tateishi U; Jinzaki M; Fujii Y
    Abdom Radiol (NY); 2022 Jun; 47(6):2178-2186. PubMed ID: 35426498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnostic value of texture analysis of apparent diffusion coefficient maps for differentiating fat-poor angiomyolipoma from non-clear-cell renal cell carcinoma.
    Arita Y; Yoshida S; Kwee TC; Akita H; Okuda S; Iwaita Y; Mukai K; Matsumoto S; Ueda R; Ishii R; Mizuno R; Fujii Y; Oya M; Jinzaki M
    Eur J Radiol; 2021 Oct; 143():109895. PubMed ID: 34388418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-Tumor Quantitative Apparent Diffusion Coefficient Histogram and Texture Analysis to Differentiation of Minimal Fat Angiomyolipoma from Clear Cell Renal Cell Carcinoma.
    Li H; Li A; Zhu H; Hu Y; Li J; Xia L; Hu D; Kamel IR; Li Z
    Acad Radiol; 2019 May; 26(5):632-639. PubMed ID: 30087067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma.
    Li H; Liang L; Li A; Hu Y; Hu D; Li Z; Kamel IR
    J Magn Reson Imaging; 2017 Jul; 46(1):240-247. PubMed ID: 27859853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Biexponential and Monoexponential Model of Diffusion-Weighted Imaging for Distinguishing between Common Renal Cell Carcinoma and Fat Poor Angiomyolipoma.
    Ding Y; Zeng M; Rao S; Chen C; Fu C; Zhou J
    Korean J Radiol; 2016; 17(6):853-863. PubMed ID: 27833401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma.
    Nie P; Yang G; Wang Z; Yan L; Miao W; Hao D; Wu J; Zhao Y; Gong A; Cui J; Jia Y; Niu H
    Eur Radiol; 2020 Feb; 30(2):1274-1284. PubMed ID: 31506816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of Angiomyolipoma With Minimal Fat from Clear Cell Renal Cell Carcinoma Using Non-contrast Multiparametric Magnetic Resonance Imaging.
    Jomoto W; Takaki H; Yamamoto S; Kanematsu A; Igeta M; Hirota S; Yamakado K
    In Vivo; 2022; 36(6):2790-2799. PubMed ID: 36309367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation between papillary renal cell carcinoma and fat-poor angiomyolipoma: a preliminary study assessing detection of intratumoral hemorrhage with chemical shift MRI and T2*-weighted gradient echo.
    Woo S; Kim SY; Cho JY; Kim SH
    Acta Radiol; 2018 May; 59(5):627-634. PubMed ID: 29069911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphologic analysis with computed tomography may help differentiate fat-poor angiomyolipoma from renal cell carcinoma: a retrospective study with 602 patients.
    Kim YH; Han K; Oh YT; Jung DC; Cho NH; Park SY
    Abdom Radiol (NY); 2018 Mar; 43(3):647-654. PubMed ID: 28677004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning-Based Magnetic Resonance Radiomics Analysis for Predicting Low- and High-Grade Clear Cell Renal Cell Carcinoma.
    Sim KC; Han NY; Cho Y; Sung DJ; Park BJ; Kim MJ; Han YE
    J Comput Assist Tomogr; 2023 Nov-Dec 01; 47(6):873-881. PubMed ID: 37948361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-weighted magnetic resonance imaging in the differentiation of angiomyolipoma with minimal fat from clear cell renal cell carcinoma.
    Tanaka H; Yoshida S; Fujii Y; Ishii C; Tanaka H; Koga F; Saito K; Masuda H; Kawakami S; Kihara K
    Int J Urol; 2011 Oct; 18(10):727-30. PubMed ID: 21815937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic test accuracy of ADC values for identification of clear cell renal cell carcinoma: systematic review and meta-analysis.
    Tordjman M; Mali R; Madelin G; Prabhu V; Kang SK
    Eur Radiol; 2020 Jul; 30(7):4023-4038. PubMed ID: 32144458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging-based radiomics analysis of the differential diagnosis of ovarian clear cell carcinoma and endometrioid carcinoma: a retrospective study.
    Takeyama N; Sasaki Y; Ueda Y; Tashiro Y; Tanaka E; Nagai K; Morioka M; Ogawa T; Tate G; Hashimoto T; Ohgiya Y
    Jpn J Radiol; 2024 Jul; 42(7):731-743. PubMed ID: 38472624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation between renal epithelioid angiomyolipoma and clear cell renal cell carcinoma using clear cell likelihood score.
    Hao YW; Zhang Y; Guo HP; Xu W; Bai X; Zhao J; Ding XH; Gao S; Cui MQ; Liu BC; Ye HY; Wang HY
    Abdom Radiol (NY); 2023 Dec; 48(12):3714-3727. PubMed ID: 37747536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small (< 4 cm) Renal Tumors With Predominantly Low Signal Intensity on T2-Weighted Images: Differentiation of Minimal-Fat Angiomyolipoma From Renal Cell Carcinoma.
    Park JJ; Kim CK
    AJR Am J Roentgenol; 2017 Jan; 208(1):124-130. PubMed ID: 27824487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiating renal epithelioid angiomyolipoma from clear cell carcinoma: using a radiomics model combined with CT imaging characteristics.
    Kim TM; Ahn H; Lee HJ; Kim MG; Cho JY; Hwang SI; Kim SY
    Abdom Radiol (NY); 2022 Aug; 47(8):2867-2880. PubMed ID: 35697856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The value of CT features and demographic data in the differential diagnosis of type 2 papillary renal cell carcinoma from fat-poor angiomyolipoma and oncocytoma.
    Zhou C; Ban X; Luo L; Shi C
    Abdom Radiol (NY); 2022 Nov; 47(11):3838-3846. PubMed ID: 36085376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can diffusion-weighted magnetic resonance imaging of clear cell renal carcinoma predict low from high nuclear grade tumors.
    Parada Villavicencio C; Mc Carthy RJ; Miller FH
    Abdom Radiol (NY); 2017 Apr; 42(4):1241-1249. PubMed ID: 27904923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis.
    Ursprung S; Beer L; Bruining A; Woitek R; Stewart GD; Gallagher FA; Sala E
    Eur Radiol; 2020 Jun; 30(6):3558-3566. PubMed ID: 32060715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.