These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35426959)

  • 21. Rightsizing root phenotypes for drought resistance.
    Lynch JP
    J Exp Bot; 2018 Jun; 69(13):3279-3292. PubMed ID: 29471525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole-plant phenotypic engineering: moving beyond ratios for multi-objective optimization of nutrient use efficiency.
    York LM; Griffiths M; Maaz TM
    Curr Opin Biotechnol; 2022 Jun; 75():102682. PubMed ID: 35104719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shaping an Optimal Soil by Root-Soil Interaction.
    Jin K; White PJ; Whalley WR; Shen J; Shi L
    Trends Plant Sci; 2017 Oct; 22(10):823-829. PubMed ID: 28803694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Root and rhizosphere traits for enhanced water and nutrients uptake efficiency in dynamic environments.
    Holz M; Zarebanadkouki M; Benard P; Hoffmann M; Dubbert M
    Front Plant Sci; 2024; 15():1383373. PubMed ID: 39145194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.
    Postma JA; Schurr U; Fiorani F
    Biotechnol Adv; 2014; 32(1):53-65. PubMed ID: 24012600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15).
    Schneider HM; Lor VSN; Hanlon MT; Perkins A; Kaeppler SM; Borkar AN; Bhosale R; Zhang X; Rodriguez J; Bucksch A; Bennett MJ; Brown KM; Lynch JP
    Plant Cell Environ; 2022 Mar; 45(3):837-853. PubMed ID: 34169548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays).
    Liu S; Barrow CS; Hanlon M; Lynch JP; Bucksch A
    Plant Physiol; 2021 Oct; 187(2):739-757. PubMed ID: 34608967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving crop nutrient efficiency through root architecture modifications.
    Li X; Zeng R; Liao H
    J Integr Plant Biol; 2016 Mar; 58(3):193-202. PubMed ID: 26460087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multiple ion-uptake phenotyping platform reveals shared mechanisms affecting nutrient uptake by roots.
    Griffiths M; Roy S; Guo H; Seethepalli A; Huhman D; Ge Y; Sharp RE; Fritschi FB; York LM
    Plant Physiol; 2021 Apr; 185(3):781-795. PubMed ID: 33793942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional implications of multiseriate cortical sclerenchyma for soil resource capture and crop improvement.
    Schneider HM
    AoB Plants; 2022 Nov; 14(6):plac050. PubMed ID: 36545297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulating the effects of water limitation on plant biomass using a 3D functional-structural plant model of shoot and root driven by soil hydraulics.
    Braghiere RK; Gérard F; Evers JB; Pradal C; Pagès L
    Ann Bot; 2020 Sep; 126(4):713-728. PubMed ID: 32249296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Comparative Analysis of Quantitative Metrics of Root Architecture.
    Rangarajan H; Lynch JP
    Plant Phenomics; 2021; 2021():6953197. PubMed ID: 33851135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association analysis of genes involved in maize (Zea mays L.) root development with seedling and agronomic traits under contrasting nitrogen levels.
    Abdel-Ghani AH; Kumar B; Pace J; Jansen C; Gonzalez-Portilla PJ; Reyes-Matamoros J; San Martin JP; Lee M; Lübberstedt T
    Plant Mol Biol; 2015 May; 88(1-2):133-47. PubMed ID: 25840559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.
    Yu P; White PJ; Li C
    Plant Signal Behav; 2015; 10(10):e1013795. PubMed ID: 26443081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings.
    Perkins AC; Lynch JP
    Ann Bot; 2021 Sep; 128(4):453-468. PubMed ID: 34120166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific.
    Yang JT; Schneider HM; Brown KM; Lynch JP
    J Exp Bot; 2019 Oct; 70(19):5311-5325. PubMed ID: 31231768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.
    Shen J; Li C; Mi G; Li L; Yuan L; Jiang R; Zhang F
    J Exp Bot; 2013 Mar; 64(5):1181-92. PubMed ID: 23255279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization modeling of plant root architecture for water and phosphorus acquisition.
    Ho MD; McCannon BC; Lynch JP
    J Theor Biol; 2004 Feb; 226(3):331-40. PubMed ID: 14643647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hierarchical evolutionary algorithm for multiobjective optimization in IMRT.
    Holdsworth C; Kim M; Liao J; Phillips MH
    Med Phys; 2010 Sep; 37(9):4986-97. PubMed ID: 20964218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural variation on whole-plant form in the wild is influenced by multivariate soil nutrient characteristics: natural selection acts on root traits.
    Murren CJ; Alt CHS; Kohler C; Sancho G
    Am J Bot; 2020 Feb; 107(2):319-328. PubMed ID: 32002983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.