These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35426987)

  • 1. Reply to the 'Comment on "Investigation of dielectric constants of water in a nano-confined pore"' by S. Mondal and B. Bagchi,
    Zhu H; Hu H; Hu B; He W; Huang J; Li G
    RSC Adv; 2021 Jan; 11(10):5753-5754. PubMed ID: 35426987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of dielectric constants of water in a nano-confined pore.
    Zhu H; Yang F; Zhu Y; Li A; He W; Huang J; Li G
    RSC Adv; 2020 Feb; 10(15):8628-8635. PubMed ID: 35496528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "investigation of dielectric constants of water in a nano-confined pore" by H. Zhu, F. Yang, Y. Zhu, A. Li, W. He, J. Huang and G. Li,
    Mondal S; Bagchi B
    RSC Adv; 2021 Jan; 11(9):5179-5181. PubMed ID: 35424444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric Properties of Aqueous Electrolyte Solutions Confined in Silica Nanopore: Molecular Simulation vs. Continuum-Based Models.
    Zhu H; Hu B
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y; Melling OJ; Dong W; Essex JW; Mobley DL
    J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.
    Puibasset J; Pellenq RJ
    J Phys Chem B; 2008 May; 112(20):6390-7. PubMed ID: 18433164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulations of confined liquids: an alternative to the grand canonical Monte Carlo simulations.
    Ghoufi A; Morineau D; Lefort R; Hureau I; Hennous L; Zhu H; Szymczyk A; Malfreyt P; Maurin G
    J Chem Phys; 2011 Feb; 134(7):074104. PubMed ID: 21341825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system.
    Hansen N; Jakobtorweihen S; Keil FJ
    J Chem Phys; 2005 Apr; 122(16):164705. PubMed ID: 15945697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition between Born solvation, dielectric exclusion, and Coulomb attraction in spherical nanopores.
    Hennequin T; Manghi M; Palmeri J
    Phys Rev E; 2021 Oct; 104(4-1):044601. PubMed ID: 34781526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of water confined in silica nanopores.
    Milischuk AA; Ladanyi BM
    J Chem Phys; 2011 Nov; 135(17):174709. PubMed ID: 22070319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics and partitioning of homopolymers into a slit-A grand canonical Monte Carlo simulation study.
    Jiang W; Wang Y
    J Chem Phys; 2004 Aug; 121(8):3905-13. PubMed ID: 15303959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between pore size and the compressibility of a confined fluid.
    Gor GY; Siderius DW; Rasmussen CJ; Krekelberg WP; Shen VK; Bernstein N
    J Chem Phys; 2015 Nov; 143(19):194506. PubMed ID: 26590541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superpermittivity of nanoconfined water.
    Renou R; Szymczyk A; Maurin G; Malfreyt P; Ghoufi A
    J Chem Phys; 2015 May; 142(18):184706. PubMed ID: 25978904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and adsorption of a hard-core multi-Yukawa fluid confined in a slitlike pore: grand canonical Monte Carlo simulation and density functional study.
    Yu YX; You FQ; Tang Y; Gao GH; Li YG
    J Phys Chem B; 2006 Jan; 110(1):334-41. PubMed ID: 16471540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of freezing of simple fluids confined within carbon nanotubes.
    Hung FR; Coasne B; Santiso EE; Gubbins KE; Siperstein FR; Sliwinska-Bartkowiak M
    J Chem Phys; 2005 Apr; 122(14):144706. PubMed ID: 15847552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study by the grand canonical Monte Carlo and molecular dynamics simulations on the squeezing behavior of nanometers confined liquid films.
    Leng Y; Xiang Y; Lei Y; Rao Q
    J Chem Phys; 2013 Aug; 139(7):074704. PubMed ID: 23968104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local Grand Canonical Monte Carlo Simulation Method for Confined Fluids.
    Vo P; Lu H; Ma K; Forsman J; Woodward CE
    J Chem Theory Comput; 2019 Dec; 15(12):6944-6957. PubMed ID: 31665596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical assessment of capillary condensation and evaporation equations: a computer simulation study.
    Wongkoblap A; Do DD; Birkett G; Nicholson D
    J Colloid Interface Sci; 2011 Apr; 356(2):672-80. PubMed ID: 21316695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable dielectric constant of water at the nanoscale.
    Renou R; Szymczyk A; Ghoufi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032411. PubMed ID: 25871127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grand canonical Monte Carlo simulations of water in protein environments.
    Woo HJ; Dinner AR; Roux B
    J Chem Phys; 2004 Oct; 121(13):6392-400. PubMed ID: 15446937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.