These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 35427120)
21. Multi-functional nanocarriers based on iron oxide nanoparticles conjugated with doxorubicin, poly(ethylene glycol) and folic acid as theranostics for cancer therapy. Rajkumar S; Prabaharan M Colloids Surf B Biointerfaces; 2018 Oct; 170():529-537. PubMed ID: 29966906 [TBL] [Abstract][Full Text] [Related]
22. Targeted delivery of Doxorubicin by folic acid-decorated dual functional nanocarrier. Lu J; Zhao W; Huang Y; Liu H; Marquez R; Gibbs RB; Li J; Venkataramanan R; Xu L; Li S; Li S Mol Pharm; 2014 Nov; 11(11):4164-78. PubMed ID: 25265550 [TBL] [Abstract][Full Text] [Related]
23. [Synthesis of folate modified chitosan-based nanomicelles and its Liu L; Huang G; Bai H; Tang G Zhejiang Da Xue Xue Bao Yi Xue Ban; 2020 May; 49(3):364-374. PubMed ID: 32762172 [TBL] [Abstract][Full Text] [Related]
24. PEGylated DOX-coated nano graphene oxide as pH-responsive multifunctional nanocarrier for targeted drug delivery. Ma K; Li W; Zhu G; Chi H; Yin Y; Li Y; Zong Y; Guo Z; Wang L; Xu W; Cui C; Zhou H; Xu J J Drug Target; 2021 Sep; 29(8):884-891. PubMed ID: 33571019 [TBL] [Abstract][Full Text] [Related]
25. Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Li L; Yang Q; Zhou Z; Zhong J; Huang Y Biomaterials; 2014 Jun; 35(19):5171-87. PubMed ID: 24702960 [TBL] [Abstract][Full Text] [Related]
26. Assembling of stimuli-responsive tumor targeting polypyrrole nanotubes drug carrier system for controlled release. Chen J; Li X; Li J; Li J; Huang L; Ren T; Yang X; Zhong S Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():316-327. PubMed ID: 29752103 [TBL] [Abstract][Full Text] [Related]
27. Enhanced Cytotoxicity of Folic Acid-Targeted Liposomes Co-Loaded with C6 Ceramide and Doxorubicin: In Vitro Evaluation on HeLa, A2780-ADR, and H69-AR Cells. Sriraman SK; Pan J; Sarisozen C; Luther E; Torchilin V Mol Pharm; 2016 Feb; 13(2):428-37. PubMed ID: 26702994 [TBL] [Abstract][Full Text] [Related]
29. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Alexander CM; Hamner KL; Maye MM; Dabrowiak JC Bioconjug Chem; 2014 Jul; 25(7):1261-71. PubMed ID: 24911830 [TBL] [Abstract][Full Text] [Related]
30. Dual-pH Sensitive Charge-Reversal Drug Delivery System for Highly Precise and Penetrative Chemotherapy. Chen W; Li J; Xing Y; Wang X; Zhang H; Xia M; Wang D Pharm Res; 2020 Jul; 37(7):134. PubMed ID: 32642819 [TBL] [Abstract][Full Text] [Related]
31. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. Tsolou A; Angelou E; Didaskalou S; Bikiaris D; Avgoustakis K; Agianian B; Koffa MD Int J Nanomedicine; 2020; 15():4899-4918. PubMed ID: 32764924 [TBL] [Abstract][Full Text] [Related]
32. Targeted H Deng Z; Tang M; Zhao L; Long Y; Wen Z; Cheng Y; Zheng H Colloids Surf B Biointerfaces; 2017 Dec; 160():207-214. PubMed ID: 28934664 [TBL] [Abstract][Full Text] [Related]
33. Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Yang X; Grailer JJ; Pilla S; Steeber DA; Gong S Bioconjug Chem; 2010 Mar; 21(3):496-504. PubMed ID: 20163170 [TBL] [Abstract][Full Text] [Related]
34. Folate-Conjugated Polyphosphoester with Reversible Cross-Linkage and Reduction Sensitivity for Drug Delivery. Cao Y; He J; Liu J; Zhang M; Ni P ACS Appl Mater Interfaces; 2018 Mar; 10(9):7811-7820. PubMed ID: 29431989 [TBL] [Abstract][Full Text] [Related]
35. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Fan L; Li F; Zhang H; Wang Y; Cheng C; Li X; Gu CH; Yang Q; Wu H; Zhang S Biomaterials; 2010 Jul; 31(21):5634-42. PubMed ID: 20430433 [TBL] [Abstract][Full Text] [Related]
36. Folic acid conjugated glycol chitosan micelles for targeted delivery of doxorubicin: preparation and preliminary evaluation in vitro. Yu J; Xie X; Wu J; Liu Y; Liu P; Xu X; Yu H; Lu L; Che X J Biomater Sci Polym Ed; 2013; 24(5):606-20. PubMed ID: 23565871 [TBL] [Abstract][Full Text] [Related]
37. A comparative study of polydopamine modified and conventional chemical synthesis method in doxorubicin liposomes form the aspect of tumor targeted therapy. Bi D; Zhao L; Li H; Guo Y; Wang X; Han M Int J Pharm; 2019 Mar; 559():76-85. PubMed ID: 30677481 [TBL] [Abstract][Full Text] [Related]
38. Sunflower Polymers for Folate-Mediated Drug Delivery. Wang CE; Wei H; Tan N; Boydston AJ; Pun SH Biomacromolecules; 2016 Jan; 17(1):69-75. PubMed ID: 26605422 [TBL] [Abstract][Full Text] [Related]
39. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. Zhao J; Yan C; Chen Z; Liu J; Song H; Wang W; Liu J; Yang N; Zhao Y; Chen L J Colloid Interface Sci; 2019 Mar; 540():66-77. PubMed ID: 30634060 [TBL] [Abstract][Full Text] [Related]
40. Anticancer activity of released doxorubicin from a folate-mediated polyelectrolyte complex. Chiu CC; Lin YT; Sun SL; Sung KH; Wang LF J Biomater Sci Polym Ed; 2011; 22(11):1487-507. PubMed ID: 20626956 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]