These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35427165)

  • 41. A simple mean-field model of glassy dynamics and glass transition.
    Ginzburg VV
    Soft Matter; 2020 Jan; 16(3):810-825. PubMed ID: 31840706
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relation between concentration fluctuations and dynamical heterogeneities in binary glass-forming liquids: A molecular dynamics simulation study.
    Müller N; Vogel M
    J Chem Phys; 2019 Feb; 150(6):064502. PubMed ID: 30770017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Broadband dielectric relaxation study at ambient and elevated pressure of molecular dynamics of pharmaceutical: indomethacin.
    Wojnarowska Z; Adrjanowicz K; Wlodarczyk P; Kaminska E; Kaminski K; Grzybowska K; Wrzalik R; Paluch M; Ngai KL
    J Phys Chem B; 2009 Sep; 113(37):12536-45. PubMed ID: 19694472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Observation of a dynamical crossover in the shear relaxation processes in supercooled selenium near the glass transition.
    Zhu W; Aitken BG; Sen S
    J Chem Phys; 2019 Mar; 150(9):094502. PubMed ID: 30849882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Communication: Observation of ultra-slow relaxation in supercooled selenium and related glass-forming liquids.
    Zhu W; Aitken BG; Sen S
    J Chem Phys; 2018 Mar; 148(11):111101. PubMed ID: 29566499
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Segmental dynamics in polymers: from cold melts to ageing and stressed glasses.
    Chen K; Saltzman EJ; Schweizer KS
    J Phys Condens Matter; 2009 Dec; 21(50):503101. PubMed ID: 21836211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films.
    Napolitano S; Capponi S; Vanroy B
    Eur Phys J E Soft Matter; 2013 Jun; 36(6):61. PubMed ID: 23797356
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vapor Condensed and Supercooled Glassy Nanoclusters.
    Qi W; Bowles RK
    ACS Nano; 2016 Mar; 10(3):3416-23. PubMed ID: 26866858
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temperature dependence of aging dynamics in highly non-equilibrium model polymer glasses.
    Jaeger TD; Simmons DS
    J Chem Phys; 2022 Mar; 156(11):114504. PubMed ID: 35317563
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments.
    Li X; Song W; Yang K; Krishnan NMA; Wang B; Smedskjaer MM; Mauro JC; Sant G; Balonis M; Bauchy M
    J Chem Phys; 2017 Aug; 147(7):074501. PubMed ID: 28830161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct evidence of two equilibration mechanisms in glassy polymers.
    Cangialosi D; Boucher VM; Alegría A; Colmenero J
    Phys Rev Lett; 2013 Aug; 111(9):095701. PubMed ID: 24033048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement.
    Korb JP
    Prog Nucl Magn Reson Spectrosc; 2018 Feb; 104():12-55. PubMed ID: 29405980
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contributions of dipolar relaxation processes and ionic transport to the response of liquids to electrical perturbation fields.
    Sanchis MJ; Ortiz-Serna P; Carsí M; Díaz-Calleja R; Riande E; Gargallo L; Radić D
    J Phys Chem B; 2011 May; 115(19):5730-40. PubMed ID: 21488650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glassy Dynamics in Geometrically Frustrated Coulomb Liquids without Disorder.
    Mahmoudian S; Rademaker L; Ralko A; Fratini S; Dobrosavljević V
    Phys Rev Lett; 2015 Jul; 115(2):025701. PubMed ID: 26207481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Derivation of a microscopic theory of barriers and activated hopping transport in glassy liquids and suspensions.
    Schweizer KS
    J Chem Phys; 2005 Dec; 123(24):244501. PubMed ID: 16396543
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural origin for vibration-induced accelerated aging and rejuvenation in metallic glasses.
    Zhou ZY; Peng HL; Yu HB
    J Chem Phys; 2019 May; 150(20):204507. PubMed ID: 31153173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relaxation Decoupling in Metallic Glasses at Low Temperatures.
    Luo P; Wen P; Bai HY; Ruta B; Wang WH
    Phys Rev Lett; 2017 Jun; 118(22):225901. PubMed ID: 28621988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Limitations of heterogeneous models of liquid dynamics: very slow rate exchange in the excess wing.
    Samanta S; Richert R
    J Chem Phys; 2014 Feb; 140(5):054503. PubMed ID: 24511948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relaxation processes in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate.
    Triolo A; Russina O; Hardacre C; Nieuwenhuyzen M; Gonzalez MA; Grimm H
    J Phys Chem B; 2005 Nov; 109(46):22061-6. PubMed ID: 16853864
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theory of relaxation and elasticity in polymer glasses.
    Chen K; Schweizer KS
    J Chem Phys; 2007 Jan; 126(1):014904. PubMed ID: 17212516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.