BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35427326)

  • 1. Analysis of Fano lineshape in extraordinary optical transmission.
    Lee SC; Brueck SRJ
    Opt Lett; 2022 Apr; 47(8):2020-2023. PubMed ID: 35427326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation of surface plasma waves in metal films perforated with n × n lattices of holes (n = 2 to 72).
    Lee SC; Brueck SRJ
    Opt Express; 2023 Nov; 31(24):40479-40489. PubMed ID: 38041347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dot infrared photodetector enhanced by surface plasma wave excitation.
    Lee SC; Krishna S; Brueck SR
    Opt Express; 2009 Dec; 17(25):23160-8. PubMed ID: 20052244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic-coupled quantum dot photodetectors for mid-infrared photonics.
    Lee SC; Krishna S; Jiang YB; Brueck SRJ
    Opt Express; 2021 Mar; 29(5):7145-7157. PubMed ID: 33726221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraordinary optical transmission in silicon nanoholes.
    Mekawey H; Ismail Y; Swillam M
    Sci Rep; 2021 Nov; 11(1):21546. PubMed ID: 34732796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.
    van Beijnum F; Rétif C; Smiet CB; Liu H; Lalanne P; van Exter MP
    Nature; 2012 Dec; 492(7429):411-4. PubMed ID: 23257884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum efficiency of plasmonic-coupled quantum dot infrared photodetectors for single- color detection: the upper limit of plasmonic enhancement.
    Lee SC; Kang JH; Park Q; Krishna S; Brueck SRJ
    Opt Express; 2020 Mar; 28(5):7618-7633. PubMed ID: 32225986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast between surface plasmon polariton-mediated extraordinary optical transmission behavior in epitaxial and polycrystalline Ag films in the mid- and far-infrared regimes.
    Li BH; Sanders CE; McIlhargey J; Cheng F; Gu C; Zhang G; Wu K; Kim J; Mousavi SH; Khanikaev AB; Lu YJ; Gwo S; Shvets G; Shih CK; Qiu X
    Nano Lett; 2012 Dec; 12(12):6187-91. PubMed ID: 23131144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced optical transmission and Fano resonance through a nanostructured metal thin film.
    Xiao B; Pradhan SK; Santiago KC; Rutherford GN; Pradhan AK
    Sci Rep; 2015 May; 5():10393. PubMed ID: 25981974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodynamic resonance of surface conduction and THz transmission through arrays of rectangular apertures in opaque metallic thin films.
    Minot C; Dupuis C; Cambril E; Garet F; Coutaz JL
    J Opt Soc Am A Opt Image Sci Vis; 2019 Jun; 36(6):964-974. PubMed ID: 31158127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous Fano Resonance in Double Quantum Dot System Coupled to Superconductor.
    Barański J; Zienkiewicz T; Barańska M; Kapcia KJ
    Sci Rep; 2020 Feb; 10(1):2881. PubMed ID: 32076018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of Fano resonances in the reflectivity of photonic crystal cavities with finite spot size excitation.
    Vasco JP; Vinck-Posada H; Valentim PT; Guimãraes PS
    Opt Express; 2013 Dec; 21(25):31336-46. PubMed ID: 24514709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional Fano Resonance in an Individual GaAs Nanospheroid.
    Ma C; Yan J; Huang Y; Yang G
    Small; 2019 May; 15(18):e1900546. PubMed ID: 30957962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes.
    Camacho M; Boix RR; Medina F; Hibbins AP; Roy Sambles J
    Opt Express; 2017 Oct; 25(20):24670-24677. PubMed ID: 29041412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control.
    Huang N; Martínez LJ; Povinelli ML
    Opt Express; 2013 Sep; 21(18):20675-82. PubMed ID: 24103940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film.
    Gordon R; Marthandam P
    Opt Express; 2007 Oct; 15(20):12995-3002. PubMed ID: 19550569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear features of Fano resonance: a QM/EM study.
    Sun J; Ding Z; Yu Y; Liang W
    Phys Chem Chem Phys; 2021 Aug; 23(30):15994-16004. PubMed ID: 34318831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials.
    Liu Z; Liu Z; Li J; Li W; Li J; Gu C; Li ZY
    Sci Rep; 2016 Jun; 6():27817. PubMed ID: 27296109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors.
    Zhang Z; Luo L; Xue C; Zhang W; Yan S
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Simultaneous Pressure Waves as Biomarkers for Colonic Motility Assessed by High-Resolution Colonic Manometry.
    Chen JH; Parsons SP; Shokrollahi M; Wan A; Vincent AD; Yuan Y; Pervez M; Chen WL; Xue M; Zhang KK; Eshtiaghi A; Armstrong D; Bercik P; Moayyedi P; Greenwald E; Ratcliffe EM; Huizinga JD
    Front Physiol; 2018; 9():1248. PubMed ID: 30294277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.